data are written in new database as the datatypes of the original database does not fit any more.
This commit is contained in:
193
data_base_operations/transform_old_db_to_new.py
Normal file
193
data_base_operations/transform_old_db_to_new.py
Normal file
@@ -0,0 +1,193 @@
|
||||
import os
|
||||
import re
|
||||
import math
|
||||
from datetime import datetime, timezone, timedelta
|
||||
|
||||
import pandas as pd
|
||||
from influxdb_client import InfluxDBClient, BucketRetentionRules, Point, WritePrecision
|
||||
from influxdb_client.client.write_api import SYNCHRONOUS
|
||||
|
||||
|
||||
# -----------------------
|
||||
# CONFIG (deine "richtigen Eingabewerte")
|
||||
# -----------------------
|
||||
INFLUX_URL = "http://192.168.1.146:8086"
|
||||
INFLUX_ORG = "allmende"
|
||||
INFLUX_TOKEN = os.environ.get("INFLUX_TOKEN", "Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==")
|
||||
|
||||
SOURCE_BUCKET = "allmende_db"
|
||||
TARGET_BUCKET = "allmende_db_v3"
|
||||
|
||||
# Welche Measurements migrieren?
|
||||
MEASUREMENTS = ["hp_master", "hp_slave"] # falls du mehr willst: ergänzen
|
||||
|
||||
# Zeitraum
|
||||
START_DT = datetime(2025, 12, 30, tzinfo=timezone.utc) # anpassen (oder weiter zurück)
|
||||
STOP_DT = datetime.now(timezone.utc)
|
||||
|
||||
# Query-Fenster (bei Timeouts kleiner machen: 6h oder 1h)
|
||||
WINDOW = timedelta(days=1)
|
||||
|
||||
# Excel Mapping: alte Felder "300 - Aussentemperatur" -> neue Felder (Tag_Name)
|
||||
EXCEL_PATH = "../modbus_registers/heat_pump_registers.xlsx"
|
||||
EXCEL_SHEET = "Register_Map"
|
||||
|
||||
|
||||
# -----------------------
|
||||
# Helpers
|
||||
# -----------------------
|
||||
def ensure_bucket(client: InfluxDBClient, bucket_name: str, retention_days: int | None = None):
|
||||
buckets_api = client.buckets_api()
|
||||
existing = buckets_api.find_bucket_by_name(bucket_name)
|
||||
if existing:
|
||||
print(f"Bucket existiert bereits: {bucket_name}")
|
||||
return existing
|
||||
|
||||
rules = None
|
||||
if retention_days is not None:
|
||||
rules = BucketRetentionRules(type="expire", every_seconds=int(timedelta(days=retention_days).total_seconds()))
|
||||
|
||||
b = buckets_api.create_bucket(bucket_name=bucket_name, org=INFLUX_ORG, retention_rules=rules)
|
||||
print(f"Bucket angelegt: {bucket_name}")
|
||||
return b
|
||||
|
||||
|
||||
def normalize(s: str) -> str:
|
||||
"""Normalisiert Field-Keys, um Abweichungen bei Whitespaces abzufangen."""
|
||||
if s is None:
|
||||
return ""
|
||||
s = str(s).strip()
|
||||
s = re.sub(r"\s+", " ", s)
|
||||
return s
|
||||
|
||||
|
||||
def to_float_or_none(v):
|
||||
if v is None:
|
||||
return None
|
||||
if isinstance(v, bool):
|
||||
return float(int(v))
|
||||
if isinstance(v, (int, float)):
|
||||
fv = float(v)
|
||||
if math.isnan(fv) or math.isinf(fv):
|
||||
return None
|
||||
return fv
|
||||
return None
|
||||
|
||||
|
||||
def is_invalid_sentinel(v: float) -> bool:
|
||||
# Optional: typische "ungültig" Marker (bei dir sichtbar)
|
||||
return v in (-999.9, -999.0, 30000.0, 32767.0, 65535.0)
|
||||
|
||||
|
||||
def build_field_mapping_from_excel(excel_path: str) -> dict[str, str]:
|
||||
"""
|
||||
Mappt ALT: "{Address} - {Description}" -> NEU: Tag_Name
|
||||
"""
|
||||
df = pd.read_excel(excel_path, sheet_name=EXCEL_SHEET)
|
||||
df = df[df["Register_Type"].astype(str).str.upper() == "IR"].copy()
|
||||
|
||||
df["Address"] = df["Address"].astype(int)
|
||||
df["Description"] = df["Description"].fillna("").astype(str)
|
||||
df["Tag_Name"] = df["Tag_Name"].fillna("").astype(str)
|
||||
|
||||
mapping: dict[str, str] = {}
|
||||
for _, r in df.iterrows():
|
||||
addr = int(r["Address"])
|
||||
desc = normalize(r["Description"])
|
||||
tag = normalize(r["Tag_Name"])
|
||||
|
||||
old_key = normalize(f"{addr} - {desc}".strip(" -"))
|
||||
new_key = tag if tag else old_key
|
||||
|
||||
mapping[old_key] = new_key
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def migrate_window(client: InfluxDBClient, query_api, write_api,
|
||||
measurement: str, field_map: dict[str, str],
|
||||
start: datetime, stop: datetime) -> int:
|
||||
start_iso = start.isoformat()
|
||||
stop_iso = stop.isoformat()
|
||||
|
||||
flux = f'''
|
||||
from(bucket: "{SOURCE_BUCKET}")
|
||||
|> range(start: time(v: "{start_iso}"), stop: time(v: "{stop_iso}"))
|
||||
|> filter(fn: (r) => r._measurement == "{measurement}")
|
||||
|> keep(columns: ["_time","_measurement","_field","_value"])
|
||||
'''
|
||||
|
||||
tables = query_api.query(flux, org=INFLUX_ORG)
|
||||
|
||||
batch = []
|
||||
written = 0
|
||||
|
||||
for table in tables:
|
||||
for record in table.records:
|
||||
t = record.get_time()
|
||||
old_field = normalize(record.get_field())
|
||||
value = to_float_or_none(record.get_value())
|
||||
if value is None or is_invalid_sentinel(value):
|
||||
continue
|
||||
|
||||
# ALT -> NEU Feldname
|
||||
new_field = field_map.get(old_field, old_field)
|
||||
|
||||
batch.append(
|
||||
Point(measurement)
|
||||
.field(new_field, float(value)) # Zielbucket: konsistent float
|
||||
.time(t, WritePrecision.NS)
|
||||
)
|
||||
|
||||
if len(batch) >= 5000:
|
||||
write_api.write(bucket=TARGET_BUCKET, org=INFLUX_ORG, record=batch)
|
||||
written += len(batch)
|
||||
batch = []
|
||||
|
||||
if batch:
|
||||
write_api.write(bucket=TARGET_BUCKET, org=INFLUX_ORG, record=batch)
|
||||
written += len(batch)
|
||||
|
||||
return written
|
||||
|
||||
|
||||
def main():
|
||||
if not INFLUX_TOKEN:
|
||||
raise RuntimeError("INFLUX_TOKEN fehlt. Setze ihn z.B. als Env-Var INFLUX_TOKEN.")
|
||||
|
||||
# Timeout hoch, da Flux-Queries je nach Datenmenge länger dauern
|
||||
with InfluxDBClient(
|
||||
url=INFLUX_URL,
|
||||
token=INFLUX_TOKEN,
|
||||
org=INFLUX_ORG,
|
||||
timeout=240_000, # ms
|
||||
) as client:
|
||||
|
||||
ensure_bucket(client, TARGET_BUCKET, retention_days=None)
|
||||
|
||||
field_map = build_field_mapping_from_excel(EXCEL_PATH)
|
||||
print(f"Field-Mappings geladen: {len(field_map)}")
|
||||
|
||||
query_api = client.query_api()
|
||||
write_api = client.write_api(write_options=SYNCHRONOUS)
|
||||
|
||||
for meas in MEASUREMENTS:
|
||||
print(f"\n== Migration: {meas} ({SOURCE_BUCKET} -> {TARGET_BUCKET}) ==")
|
||||
|
||||
cur = START_DT
|
||||
total = 0
|
||||
while cur < STOP_DT:
|
||||
nxt = min(cur + WINDOW, STOP_DT)
|
||||
print(f" Fenster: {cur.isoformat()} -> {nxt.isoformat()}")
|
||||
|
||||
n = migrate_window(client, query_api, write_api, meas, field_map, cur, nxt)
|
||||
total += n
|
||||
print(f" geschrieben: {n} (gesamt {total})")
|
||||
|
||||
cur = nxt
|
||||
|
||||
print(f"== Fertig {meas}: {total} Punkte ==")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -162,12 +162,8 @@ class HeatPump:
|
||||
# continue
|
||||
value = float(value)
|
||||
desc = meta.get("desc") or ""
|
||||
label = f"{address} - {desc}".strip(" -")
|
||||
|
||||
data[label] = value
|
||||
tag = meta.get("tag")
|
||||
if tag:
|
||||
data[tag] = value
|
||||
field_name = f"{address} - {desc}".strip(" -")
|
||||
data[field_name] = float(value)
|
||||
|
||||
print(f"Adresse {address} - {desc}: {value}")
|
||||
|
||||
|
||||
2
main.py
2
main.py
@@ -23,7 +23,7 @@ db = DataBaseInflux(
|
||||
url="http://192.168.1.146:8086",
|
||||
token="Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==",
|
||||
org="allmende",
|
||||
bucket="allmende_db"
|
||||
bucket="allmende_db_v3"
|
||||
)
|
||||
|
||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||
|
||||
Reference in New Issue
Block a user