2 Commits

2 changed files with 172 additions and 156 deletions

84
main.py
View File

@@ -26,57 +26,57 @@ db = DataBaseInflux(
bucket="allmende_db"
)
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
# hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
# hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
# shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr_master = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112', unit=1)
wr_slave = PvInverter(device_name='solaredge_slave', ip_address='192.168.1.112', unit=3)
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
es.add_components(hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
controller = SgReadyController(es)
# FORECASTING
latitude = 48.041
longitude = 7.862
TZ = "Europe/Berlin"
HORIZON_DAYS = 2
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
p_module = 435
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
pv_plant = PvWattsPlant(site, cfgs)
now = datetime.now()
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
es.add_components(wr_master, wr_slave)#hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
# controller = SgReadyController(es)
#
# # FORECASTING
# latitude = 48.041
# longitude = 7.862
# TZ = "Europe/Berlin"
# HORIZON_DAYS = 2
# weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
# site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
#
# p_module = 435
# upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
# upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
# upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
# upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
# cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
# pv_plant = PvWattsPlant(site, cfgs)
#
# now = datetime.now()
# next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
while True:
now = datetime.now()
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
state = es.get_state_and_store_to_database(db)
mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
# mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
#
# if mode == 'mode1':
# mode_as_binary = 0
# else:
# mode_as_binary = 1
# db.store_data('sg_ready', {'mode': mode_as_binary})
if mode == 'mode1':
mode_as_binary = 0
else:
mode_as_binary = 1
db.store_data('sg_ready', {'mode': mode_as_binary})
if now >= next_forecast_at:
# Start der Prognose: ab der kommenden vollen Stunde
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
total = pv_plant.get_power(weather)
db.store_forecasts('pv_forecast', total)
# Nächste geplante Ausführung definieren (immer volle Stunde)
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
while next_forecast_at <= now:
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
# if now >= next_forecast_at:
# # Start der Prognose: ab der kommenden vollen Stunde
# start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
# weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
# total = pv_plant.get_power(weather)
# db.store_forecasts('pv_forecast', total)
#
# # Nächste geplante Ausführung definieren (immer volle Stunde)
# # Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
# while next_forecast_at <= now:
# next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
time.sleep(0.1)

View File

@@ -1,139 +1,155 @@
import time
import struct
import pandas as pd
from typing import Dict, Any, List, Tuple, Optional
# pv_inverter.py
# -*- coding: utf-8 -*-
from typing import Optional, Dict, Any, List
from pymodbus.client import ModbusTcpClient
from pymodbus.exceptions import ModbusIOException
import struct
import time
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
# Obergrenze: bis EXKLUSIVE 40206 (d.h. max. 40205)
MAX_ADDR_EXCLUSIVE = 40121
class PvInverter:
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
self.device_name = device_name
self.ip = ip_address
self.port = port
self.unit = unit
self.client: Optional[ModbusTcpClient] = None
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
self.connect_to_modbus()
self.load_registers(EXCEL_PATH)
"""
Minimaler Reader für einen SolarEdge-Inverter hinter Modbus-TCP→RTU-Gateway.
Liest nur die bekannten Register (wie im funktionierenden Skript).
Kompatibel mit pymodbus 2.5.x und 3.x kein retry_on_empty.
"""
# ---------- Verbindung ----------
def connect_to_modbus(self):
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
def __init__(
self,
device_name: str,
ip_address: str,
port: int = 502,
unit_id: int = 1,
timeout: float = 1.5,
silent_interval: float = 0.02,
):
self.device_name = device_name
self.host = ip_address
self.port = port
self.unit = unit_id
self.timeout = timeout
self.silent_interval = silent_interval
self.client: Optional[ModbusTcpClient] = None
self._connect()
# ---------------- Verbindung ----------------
def _connect(self):
# retries=0: keine internen Mehrfachversuche
self.client = ModbusTcpClient(self.host, port=self.port, timeout=self.timeout, retries=0)
if not self.client.connect():
print("Verbindung zu Wechselrichter fehlgeschlagen.")
raise SystemExit(1)
print("✅ Verbindung zu Wechselrichter hergestellt.")
raise ConnectionError(f"Verbindung zu {self.device_name} ({self.host}:{self.port}) fehlgeschlagen.")
print(f"✅ Verbindung hergestellt zu {self.device_name} ({self.host}:{self.port}, unit={self.unit})")
def close(self):
if self.client:
self.client.close()
self.client = None
# ---------- Register-Liste ----------
def load_registers(self, excel_path: str):
xls = pd.ExcelFile(excel_path)
df = xls.parse()
# Passe Spaltennamen hier an, falls nötig:
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
df = df[cols].dropna()
df["MB Adresse"] = df["MB Adresse"].astype(int)
# 1) Vorab-Filter: nur Adressen < 40206 übernehmen
df = df[df["MB Adresse"] < MAX_ADDR_EXCLUSIVE]
self.registers = {
int(row["MB Adresse"]): {
"desc": str(row["Beschreibung"]).strip(),
"type": str(row["Variabel Typ"]).strip()
}
for _, row in df.iterrows()
}
# ---------- Low-Level Lesen ----------
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
fn = getattr(self.client, fn_name)
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
for kwargs in (dict(address=address, count=count, slave=self.unit),
dict(address=address, count=count)):
# ---------------- Low-Level Lesen ----------------
def _read_regs(self, addr: int, count: int) -> Optional[List[int]]:
"""Liest 'count' Holding-Register ab base-0 'addr' für die konfigurierte Unit-ID."""
try:
res = fn(**kwargs)
if res is None or (hasattr(res, "isError") and res.isError()):
continue
return res.registers
except TypeError:
continue
rr = self.client.read_holding_registers(address=addr, count=count, slave=self.unit)
except ModbusIOException:
time.sleep(self.silent_interval)
return None
except Exception:
time.sleep(self.silent_interval)
return None
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
regs = self._try_read("read_holding_registers", address, count)
if regs is None:
regs = self._try_read("read_input_registers", address, count)
return regs
time.sleep(self.silent_interval)
if not rr or rr.isError():
return None
return rr.registers
# ---------- Decoding ----------
@staticmethod
def _to_i16(u16: int) -> int:
def _to_int16(u16: int) -> int:
return struct.unpack(">h", struct.pack(">H", u16))[0]
@staticmethod
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
b = struct.pack(">HH", u16_hi, u16_lo) if msw_first else struct.pack(">HH", u16_lo, u16_hi)
return struct.unpack(">f", b)[0]
def _apply_sf(raw: int, sf: int) -> float:
return raw * (10 ** sf)
# Hilfsfunktion: wie viele 16-Bit-Register braucht dieser Typ?
@staticmethod
def _word_count_for_type(rtype: str) -> int:
rt = (rtype or "").lower()
# Passe hier an deine Excel-Typen an:
if "uint32" in rt or "real" in rt or "float" in rt or "string(32)" in rt:
return 2
# Default: 1 Wort (z.B. int16/uint16)
return 1
def _read_string_from_regs(regs: List[int]) -> Optional[str]:
b = b"".join(struct.pack(">H", r) for r in regs)
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
return s or None
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
"""
Liest einen Wert nach Typ ('INT' oder 'REAL' etc.).
Es werden ausschließlich Register < 40206 gelesen.
"""
addr = int(address_excel)
words = self._word_count_for_type(rtype)
# 2) Harte Grenze prüfen: höchstes angefasstes Register muss < 40206 sein
if addr + words - 1 >= MAX_ADDR_EXCLUSIVE:
# Überspringen, da der Lesevorgang die Grenze >= 40206 berühren würde
# ---------------- Hilfsfunktionen ----------------
def _read_string(self, addr: int, words: int) -> Optional[str]:
regs = self._read_regs(addr, words)
if regs is None:
return None
return self._read_string_from_regs(regs)
if words == 2:
regs = self._read_any(addr, 2)
if not regs or len(regs) < 2:
def _read_scaled(self, value_addr: int, sf_addr: int) -> Optional[float]:
regs = self._read_regs(value_addr, 1)
sf = self._read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
# Deine bisherige Logik interpretiert 2 Worte als Float32:
return self._to_f32_from_two(regs[0], regs[1])
else:
regs = self._read_any(addr, 1)
if not regs:
return None
return float(self._to_i16(regs[0]))
raw = self._to_int16(regs[0])
sff = self._to_int16(sf[0])
return self._apply_sf(raw, sff)
def _read_u32_with_sf(self, value_addr: int, sf_addr: int) -> Optional[float]:
regs = self._read_regs(value_addr, 2)
sf = self._read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
u32 = (regs[0] << 16) | regs[1]
sff = self._to_int16(sf[0])
return self._apply_sf(u32, sff)
# ---------------- Öffentliche API ----------------
def get_state(self) -> Dict[str, Any]:
"""
Liest ALLE Register aus self.registers und gibt dict zurück.
Achtet darauf, dass keine Adresse (inkl. Mehrwort) >= 40206 gelesen wird.
"""
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
for address, meta in sorted(self.registers.items()):
words = self._word_count_for_type(meta["type"])
# 3) Nochmals Schutz auf Ebene der Iteration:
if address + words - 1 >= MAX_ADDR_EXCLUSIVE:
continue
val = self.read_one(address, meta["type"])
if val is None:
continue
key = f"{address} - {meta['desc']}"
data[key] = val
return data
"""Liest exakt die bekannten Register und gibt ein Dict zurück."""
state: Dict[str, Any] = {}
# --- Common Block ---
state["C_Manufacturer"] = self._read_string(40004, 16)
state["C_Model"] = self._read_string(40020, 16)
state["C_Version"] = self._read_string(40044, 8)
state["C_SerialNumber"] = self._read_string(40052, 16)
# --- Inverter Block ---
state["I_AC_Power_W"] = self._read_scaled(40083, 40084)
state["I_AC_Voltage_V"] = self._read_scaled(40079, 40082)
state["I_AC_Frequency_Hz"] = self._read_scaled(40085, 40086)
state["I_DC_Power_W"] = self._read_scaled(40100, 40101)
state["I_AC_Energy_Wh_total"] = self._read_u32_with_sf(40093, 40095)
status_regs = self._read_regs(40107, 2)
if status_regs:
state["I_Status"] = status_regs[0]
state["I_Status_Vendor"] = status_regs[1]
else:
state["I_Status"] = None
state["I_Status_Vendor"] = None
return state
# ---------------- Beispiel ----------------
if __name__ == "__main__":
MODBUS_IP = "192.168.1.112"
MODBUS_PORT = 502
master = PvInverter("solaredge_master", MODBUS_IP, port=MODBUS_PORT, unit_id=1)
slave = PvInverter("solaredge_slave", MODBUS_IP, port=MODBUS_PORT, unit_id=3)
try:
sm = master.get_state()
ss = slave.get_state()
print("\n=== MASTER ===")
for k, v in sm.items():
print(f"{k:22s}: {v}")
print("\n=== SLAVE ===")
for k, v in ss.items():
print(f"{k:22s}: {v}")
finally:
master.close()
slave.close()