6 Commits

Author SHA1 Message Date
Nils Reiners
4727364048 scheint zu laufen 2025-12-09 22:07:57 +01:00
Nils Reiners
666eb211a3 old version of pv_forecaster restored 2025-10-29 22:03:46 +01:00
Nils Reiners
ba6ff9f6c3 stündliche Speicherung des Forecasts angepasst 2025-10-07 22:34:16 +02:00
Nils Reiners
9ccb1e042b stündliche Speicherung des Forecasts angepasst 2025-10-07 22:33:02 +02:00
Nils Reiners
a5bcfca39a stündliche Speicherung des Forecasts angepasst 2025-10-07 22:29:49 +02:00
Nils Reiners
a1f9e29134 pv forecaster added 2025-10-07 20:52:28 +02:00
12 changed files with 331 additions and 3 deletions

View File

@@ -1,5 +1,7 @@
from influxdb_client import InfluxDBClient, Point, WritePrecision from influxdb_client import InfluxDBClient, Point, WritePrecision
from datetime import datetime from datetime import datetime
import datetime as dt
import pandas as pd
class DataBaseInflux: class DataBaseInflux:
def __init__(self, url: str, token: str, org: str, bucket: str): def __init__(self, url: str, token: str, org: str, bucket: str):
@@ -25,4 +27,22 @@ class DataBaseInflux:
# Punkt in InfluxDB schreiben # Punkt in InfluxDB schreiben
self.write_api.write(bucket=self.bucket, org=self.org, record=point) self.write_api.write(bucket=self.bucket, org=self.org, record=point)
def store_forecasts(self, forecast_name: str, data: pd.Series):
measurement = forecast_name
run_tag = dt.datetime.now(dt.timezone.utc).replace(second=0, microsecond=0).isoformat(timespec="minutes")
pts = []
series = pd.to_numeric(data, errors="coerce").dropna()
for ts, val in series.items():
pts.append(
Point(measurement)
.tag("run", run_tag)
.field("value", float(val))
.time(ts.to_pydatetime(), WritePrecision.S)
)
self.write_api.write(bucket=self.bucket, org=self.org, record=pts)

View File

@@ -0,0 +1,61 @@
#!/usr/bin/env python3
import time
import datetime as dt
import requests
from zoneinfo import ZoneInfo
from matplotlib import pyplot as plt
import pandas as pd
TZ = "Europe/Berlin"
DAYS = 2
OPEN_METEO_URL = "https://api.open-meteo.com/v1/forecast"
class WeatherForecaster:
def __init__(self, latitude, longitude):
self.lat = latitude
self.lon = longitude
def get_hourly_forecast(self, start_hour, days):
start_hour_local = start_hour
end_hour_local = start_hour_local + dt.timedelta(days=days)
params = {
"latitude": self.lat,
"longitude": self.lon,
"hourly": ["temperature_2m", "shortwave_radiation", "wind_speed_10m"],
"timezone": TZ,
"start_hour": start_hour_local.strftime("%Y-%m-%dT%H:%M"),
"end_hour": end_hour_local.strftime("%Y-%m-%dT%H:%M")
}
h = requests.get(OPEN_METEO_URL, params=params).json()["hourly"]
time_stamps = h["time"]
time_stamps = [
dt.datetime.fromisoformat(t).replace(tzinfo=ZoneInfo(TZ))
for t in time_stamps
]
weather = pd.DataFrame(index=time_stamps)
weather["ghi"] = h["shortwave_radiation"]
weather["temp_air"] = h["temperature_2m"]
weather["wind_speed"] = h["wind_speed_10m"]
return weather
if __name__=='__main__':
weather_forecast = WeatherForecaster(latitude=48.041, longitude=7.862)
while True:
now = dt.datetime.now()
secs = 60 - now.second #(60 - now.minute) * 60 - now.second # Sekunden bis volle Stunde
time.sleep(secs)
now_local = dt.datetime.now()
start_hour_local = (now_local + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
time_stamps, temps, ghi, wind_speed = weather_forecast.get_hourly_forecast(start_hour_local, DAYS)
plt.plot(time_stamps, temps)
plt.show()

40
main.py
View File

@@ -1,12 +1,16 @@
import time import time
from datetime import datetime from datetime import datetime
from data_base_influx import DataBaseInflux from data_base_influx import DataBaseInflux
from forecaster.weather_forecaster import WeatherForecaster
from heat_pump import HeatPump from heat_pump import HeatPump
from pv_inverter import PvInverter from pv_inverter import PvInverter
from simulators.pv_plant_simulator import PvWattsSubarrayConfig, PvWattsPlant
from solaredge_meter import SolaredgeMeter from solaredge_meter import SolaredgeMeter
from shelly_pro_3m import ShellyPro3m from shelly_pro_3m import ShellyPro3m
from energysystem import EnergySystem from energysystem import EnergySystem
from sg_ready_controller import SgReadyController from sg_ready_controller import SgReadyController
from pvlib.location import Location
import datetime as dt
# For dev-System run in terminal: ssh -N -L 127.0.0.1:8111:10.0.0.10:502 pi@192.168.1.146 # For dev-System run in terminal: ssh -N -L 127.0.0.1:8111:10.0.0.10:502 pi@192.168.1.146
# For productive-System change IP-adress in heatpump to '10.0.0.10' and port to 502 # For productive-System change IP-adress in heatpump to '10.0.0.10' and port to 502
@@ -22,8 +26,8 @@ db = DataBaseInflux(
bucket="allmende_db" bucket="allmende_db"
) )
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502) hp_master = HeatPump(device_name='hp_master', ip_address='127.0.0.1', port=8111)
hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502) hp_slave = HeatPump(device_name='hp_slave', ip_address='127.0.0.1', port=8111)
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121') shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112') wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112')
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112') meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
@@ -31,6 +35,24 @@ meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112'
es.add_components(hp_master, hp_slave, shelly, wr, meter) es.add_components(hp_master, hp_slave, shelly, wr, meter)
controller = SgReadyController(es) controller = SgReadyController(es)
# FORECASTING
latitude = 48.041
longitude = 7.862
TZ = "Europe/Berlin"
HORIZON_DAYS = 2
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
p_module = 435
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
pv_plant = PvWattsPlant(site, cfgs)
now = datetime.now()
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
while True: while True:
now = datetime.now() now = datetime.now()
if now.second % interval_seconds == 0 and now.microsecond < 100_000: if now.second % interval_seconds == 0 and now.microsecond < 100_000:
@@ -42,5 +64,19 @@ while True:
else: else:
mode_as_binary = 1 mode_as_binary = 1
db.store_data('sg_ready', {'mode': mode_as_binary}) db.store_data('sg_ready', {'mode': mode_as_binary})
if now >= next_forecast_at:
# Start der Prognose: ab der kommenden vollen Stunde
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
total = pv_plant.get_power(weather)
db.store_forecasts('pv_forecast', total)
# Nächste geplante Ausführung definieren (immer volle Stunde)
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
while next_forecast_at <= now:
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
time.sleep(0.1) time.sleep(0.1)

View File

@@ -2,3 +2,4 @@ pymodbus~=3.8.6
pandas pandas
openpyxl openpyxl
sshtunnel sshtunnel
pvlib

View File

@@ -0,0 +1,210 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Dict, List, Literal, Tuple, Union
import numpy as np
import pandas as pd
import pvlib
import matplotlib.pyplot as plt
from pvlib.location import Location
from pvlib.pvsystem import PVSystem
from pvlib.modelchain import ModelChain
SeriesOrArray = Union[pd.Series, np.ndarray]
# ----------------------------- Konfiguration -----------------------------
@dataclass
class PvWattsSubarrayConfig:
name: str
pdc0_w: float # STC-DC-Leistung [W]
tilt_deg: float # Neigung (0=horizontal)
azimuth_deg: float # Azimut (180=Süd)
gamma_pdc: float = -0.004 # Tempkoeff. [1/K]
eta_inv_nom: float = 0.96 # WR-Wirkungsgrad (nominal)
albedo: float = 0.2 # Bodenreflexion
# Pauschale Verluste (PVWatts-Losses)
dc_loss: float = 0.0
ac_loss: float = 0.0
soiling: float = 0.0
# Modell
transposition_model: Literal["perez","haydavies","isotropic","klucher","reindl"] = "perez"
# ------------------------------ Subarray ---------------------------------
class PvWattsSubarray:
"""
Ein Subarray mit pvlib.ModelChain (PVWatts).
Berechnet automatisch DNI/DHI aus GHI (ERBS-Methode)
und nutzt ein SAPM-Temperaturmodell.
"""
def __init__(self, cfg: PvWattsSubarrayConfig, location: Location):
self.cfg = cfg
self.location = location
self._mc: Optional[ModelChain] = None
# ---------------------------------------------------------------------
def _create_modelchain(self) -> ModelChain:
"""Erzeuge eine pvlib.ModelChain-Instanz mit PVWatts-Parametern."""
temp_params = pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS["sapm"]["open_rack_glass_polymer"]
system = PVSystem(
surface_tilt=self.cfg.tilt_deg,
surface_azimuth=self.cfg.azimuth_deg,
module_parameters={"pdc0": self.cfg.pdc0_w, "gamma_pdc": self.cfg.gamma_pdc},
inverter_parameters={"pdc0": self.cfg.pdc0_w, "eta_inv_nom": self.cfg.eta_inv_nom},
albedo=self.cfg.albedo,
temperature_model_parameters=temp_params,
module_type="glass_polymer",
racking_model="open_rack",
)
mc = ModelChain(
system, self.location,
transposition_model=self.cfg.transposition_model,
solar_position_method="nrel_numpy",
airmass_model="kastenyoung1989",
dc_model="pvwatts",
ac_model="pvwatts",
aoi_model="physical",
spectral_model=None,
losses_model="pvwatts",
temperature_model="sapm",
)
mc.losses_parameters = {
"dc_loss": float(self.cfg.dc_loss),
"ac_loss": float(self.cfg.ac_loss),
"soiling": float(self.cfg.soiling),
}
self._mc = mc
return mc
# ---------------------------------------------------------------------
def calc_dni_and_dhi(self, weather: pd.DataFrame) -> pd.DataFrame:
"""
Berechnet DNI & DHI aus GHI über die ERBS-Methode.
Gibt ein neues DataFrame mit 'ghi', 'dni', 'dhi' zurück.
"""
if "ghi" not in weather:
raise ValueError("Wetterdaten benötigen mindestens 'ghi'.")
# Sonnenstand bestimmen
sp = self.location.get_solarposition(weather.index)
erbs = pvlib.irradiance.erbs(weather["ghi"], sp["zenith"], weather.index)
out = weather.copy()
out["dni"] = erbs["dni"].clip(lower=0)
out["dhi"] = erbs["dhi"].clip(lower=0)
return out
# ---------------------------------------------------------------------
def _prepare_weather(self, weather: pd.DataFrame) -> pd.DataFrame:
"""Sichert vollständige Spalten (ghi, dni, dhi, temp_air, wind_speed)."""
if "ghi" not in weather or "temp_air" not in weather:
raise ValueError("weather benötigt Spalten: 'ghi' und 'temp_air'.")
w = weather.copy()
# Zeitzone prüfen
if w.index.tz is None:
w.index = w.index.tz_localize(self.location.tz)
else:
if str(w.index.tz) != str(self.location.tz):
w = w.tz_convert(self.location.tz)
# Wind default
if "wind_speed" not in w:
w["wind_speed"] = 1.0
# DNI/DHI ergänzen (immer mit ERBS)
if "dni" not in w or "dhi" not in w:
w = self.calc_dni_and_dhi(w)
return w
# ---------------------------------------------------------------------
def get_power(self, weather: pd.DataFrame) -> pd.Series:
"""
Berechnet AC-Leistung aus Wetterdaten.
"""
w = self._prepare_weather(weather)
mc = self._create_modelchain()
mc.run_model(weather=w)
return mc.results.ac.rename(self.cfg.name)
# ------------------------------- Anlage ----------------------------------
class PvWattsPlant:
"""
Eine PV-Anlage mit mehreren Subarrays, die ein gemeinsames Wetter-DataFrame nutzt.
"""
def __init__(self, site: Location, subarray_cfgs: List[PvWattsSubarrayConfig]):
self.site = site
self.subs: Dict[str, PvWattsSubarray] = {c.name: PvWattsSubarray(c, site) for c in subarray_cfgs}
def get_power(
self,
weather: pd.DataFrame,
*,
return_breakdown: bool = False
) -> pd.Series | Tuple[pd.Series, Dict[str, pd.Series]]:
"""Berechne Gesamtleistung und optional Einzel-Subarrays."""
parts: Dict[str, pd.Series] = {name: sub.get_power(weather) for name, sub in self.subs.items()}
# gemeinsamen Index bilden
idx = list(parts.values())[0].index
for s in parts.values():
idx = idx.intersection(s.index)
parts = {k: v.reindex(idx).fillna(0.0) for k, v in parts.items()}
total = sum(parts.values())
total.name = "total_ac"
if return_breakdown:
return total, parts
return total
# --------------------------- Beispielnutzung -----------------------------
if __name__ == "__main__":
# Standort
site = Location(latitude=52.52, longitude=13.405, altitude=35, tz="Europe/Berlin", name="Berlin")
# Zeitachse: 1 Tag, 15-minütig
times = pd.date_range("2025-06-21 00:00", "2025-06-21 23:45", freq="15min", tz=site.tz)
# Dummy-Wetter
ghi = 1000 * np.clip(np.sin(np.linspace(0, np.pi, len(times)))**1.2, 0, None)
temp_air = 16 + 8 * np.clip(np.sin(np.linspace(-np.pi/2, np.pi/2, len(times))), 0, None)
wind = np.full(len(times), 1.0)
weather = pd.DataFrame(index=times)
weather["ghi"] = ghi
weather["temp_air"] = temp_air
weather["wind_speed"] = wind
# Zwei Subarrays
cfgs = [
PvWattsSubarrayConfig(name="Sued_30", pdc0_w=6000, tilt_deg=30, azimuth_deg=180, dc_loss=0.02, ac_loss=0.01),
PvWattsSubarrayConfig(name="West_20", pdc0_w=4000, tilt_deg=20, azimuth_deg=270, soiling=0.02),
]
plant = PvWattsPlant(site, cfgs)
# Simulation
total, parts = plant.get_power(weather, return_breakdown=True)
# Plot
plt.figure(figsize=(10, 6))
plt.plot(total.index, total / 1000, label="Gesamtleistung (AC)", linewidth=2, color="black")
for name, s in parts.items():
plt.plot(s.index, s / 1000, label=name)
plt.title("PV-Leistung (PVWatts, ERBS-Methode für DNI/DHI)")
plt.ylabel("Leistung [kW]")
plt.xlabel("Zeit")
plt.legend()
plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout()
plt.show()