1 Commits

Author SHA1 Message Date
Nils Reiners
13f27e12e8 first version of load forecaster implemented - not yet running 2025-10-23 13:21:28 +02:00
16 changed files with 401 additions and 430 deletions

View File

@@ -1,7 +0,0 @@
from heat_pump import HeatPump
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502, excel_path="../modbus_registers/heat_pump_registers.xlsx")
state = hp_master.get_state()
print(state)

View File

@@ -1,49 +0,0 @@
from pymodbus.client import ModbusTcpClient
def switch_sg_ready_mode(ip, port, mode):
"""
Register 300: 1=BUS 0= Hardware Kontakte
Register 301 & 302:
0-0= Kein Offset
0-1 Boiler und Heizung Offset
1-1 Boiler Offset + E-Einsatz Sollwert Erhöht
1-0 SG EVU Sperre
:param ip:
:param mode:
'mode1' = [True, False, False] => SG Ready deactivated
'mode2' = [True, False, True] => SG ready activated for heatpump only
'mode3' = [True, True, True] => SG ready activated for heatpump and heat rod
:return:
"""
client = ModbusTcpClient(ip, port=port)
if not client.connect():
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
return
mode_code = None
if mode == 'mode1':
mode_code = [True, False, False]
elif mode == 'mode2':
mode_code = [True, False, True]
elif mode == 'mode3':
mode_code = [True, True, True]
else:
print('Uncorrect or no string for mode!')
try:
response_300 = client.write_coil(300, mode_code[0])
response_301 = client.write_coil(301, mode_code[1])
response_302 = client.write_coil(302, mode_code[2])
# Optional: Rückmeldungen prüfen
for addr, resp in zip([300, 301, 302], [response_300, response_301, response_302]):
if resp.isError():
print(f"Fehler beim Schreiben von Coil {addr}: {resp}")
else:
print(f"Coil {addr} erfolgreich geschrieben.")
finally:
client.close()
if '__name__' == '__main__':
switch_sg_ready_mode(ip='10.0.0.10', port=502, mode='mode2')

View File

@@ -1,213 +0,0 @@
import os, re, math, time
from datetime import datetime, timezone, timedelta
import pandas as pd
from influxdb_client import InfluxDBClient, Point, WritePrecision
from influxdb_client.client.write_api import SYNCHRONOUS
from influxdb_client.rest import ApiException
# -----------------------
# CONFIG
# -----------------------
INFLUX_URL = "http://192.168.1.146:8086"
INFLUX_ORG = "allmende"
INFLUX_TOKEN = os.environ.get("INFLUX_TOKEN", "Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==")
SOURCE_BUCKET = "allmende_db"
TARGET_BUCKET = "allmende_db_v2"
MEASUREMENTS = [
"hp_master", "hp_slave", "pv_forecast", "sg_ready",
"solaredge_master", "solaredge_meter", "solaredge_slave", "wohnung_2_6"
]
START_DT = datetime(2025, 6, 1, tzinfo=timezone.utc)
STOP_DT = datetime.now(timezone.utc)
WINDOW = timedelta(days=1)
EXCEL_PATH = "../modbus_registers/heat_pump_registers.xlsx"
EXCEL_SHEET = "Register_Map"
BATCH_SIZE = 1000
MAX_RETRIES = 8
# -----------------------
# Helpers
# -----------------------
def normalize(s) -> str:
s = "" if s is None else str(s).strip()
return re.sub(r"\s+", " ", s)
def is_invalid_sentinel(v: float) -> bool:
return v in (-999.9, -999.0, 30000.0, 32767.0, 65535.0)
def ensure_bucket(client: InfluxDBClient, name: str):
bapi = client.buckets_api()
if bapi.find_bucket_by_name(name):
return
bapi.create_bucket(bucket_name=name, org=INFLUX_ORG, retention_rules=None)
def build_field_type_map_from_excel(path: str) -> dict[str, str]:
df = pd.read_excel(path, sheet_name=EXCEL_SHEET)
df = df[df["Register_Type"].astype(str).str.upper() == "IR"].copy()
df["Address"] = df["Address"].astype(int)
df["Description"] = df["Description"].fillna("").astype(str)
df["Tag_Name"] = df["Tag_Name"].fillna("").astype(str)
df["Data_Type"] = df["Data_Type"].fillna("").astype(str)
m: dict[str, str] = {}
for _, r in df.iterrows():
addr = int(r["Address"])
desc = normalize(r["Description"])
tag = normalize(r["Tag_Name"])
dtp = normalize(r["Data_Type"]).upper()
if tag:
m[tag] = dtp
old_key = normalize(f"{addr} - {desc}".strip(" -"))
if old_key:
m[old_key] = dtp
return m
def coerce_value_to_dtype(v, dtype: str):
if v is None:
return None
dtp = (dtype or "").upper()
if isinstance(v, (int, float)):
fv = float(v)
if math.isnan(fv) or math.isinf(fv):
return None
if dtp in ("BOOL", "BOOLEAN"):
if isinstance(v, bool): return v
if isinstance(v, (int, float)): return bool(int(v))
return None
if dtp.startswith("INT") or dtp.startswith("UINT"):
if isinstance(v, bool): return int(v)
if isinstance(v, (int, float)): return int(float(v))
return None
if dtp.startswith("FLOAT") or dtp in ("DOUBLE",):
if isinstance(v, bool): return float(int(v))
if isinstance(v, (int, float)): return float(v)
return None
return None
def write_with_retry(write_api, batch):
delay = 1.0
last_msg = ""
for _ in range(MAX_RETRIES):
try:
write_api.write(bucket=TARGET_BUCKET, org=INFLUX_ORG, record=batch)
return
except ApiException as e:
last_msg = getattr(e, "body", "") or str(e)
status = getattr(e, "status", None)
if "timeout" in last_msg.lower() or status in (429, 500, 502, 503, 504):
time.sleep(delay)
delay = min(delay * 2, 30)
continue
raise
raise RuntimeError(f"Write failed after {MAX_RETRIES} retries: {last_msg}")
def window_already_migrated(query_api, measurement: str, start: datetime, stop: datetime) -> bool:
# Prüft: gibt es im Zielbucket im Fenster mindestens 1 Punkt?
flux = f'''
from(bucket: "{TARGET_BUCKET}")
|> range(start: time(v: "{start.isoformat()}"), stop: time(v: "{stop.isoformat()}"))
|> filter(fn: (r) => r._measurement == "{measurement}")
|> limit(n: 1)
'''
tables = query_api.query(flux, org=INFLUX_ORG)
for t in tables:
if t.records:
return True
return False
def migrate_window(query_api, write_api, measurement: str,
start: datetime, stop: datetime,
type_map: dict[str, str],
do_type_cast: bool) -> int:
flux = f'''
from(bucket: "{SOURCE_BUCKET}")
|> range(start: time(v: "{start.isoformat()}"), stop: time(v: "{stop.isoformat()}"))
|> filter(fn: (r) => r._measurement == "{measurement}")
|> keep(columns: ["_time","_measurement","_field","_value"])
'''
tables = query_api.query(flux, org=INFLUX_ORG)
batch, written = [], 0
for table in tables:
for rec in table.records:
t = rec.get_time()
field = normalize(rec.get_field())
value = rec.get_value()
if value is None:
continue
if do_type_cast:
dtp = type_map.get(field)
if dtp:
cv = coerce_value_to_dtype(value, dtp)
if cv is None:
continue
if isinstance(cv, (int, float)) and is_invalid_sentinel(float(cv)):
continue
value = cv
# kein Mapping -> unverändert schreiben
batch.append(Point(measurement).field(field, value).time(t, WritePrecision.NS))
if len(batch) >= BATCH_SIZE:
write_with_retry(write_api, batch)
written += len(batch)
batch = []
if batch:
write_with_retry(write_api, batch)
written += len(batch)
return written
# -----------------------
# Main
# -----------------------
def main():
if not INFLUX_TOKEN:
raise RuntimeError("INFLUX_TOKEN fehlt (Env-Var INFLUX_TOKEN setzen).")
with InfluxDBClient(url=INFLUX_URL, token=INFLUX_TOKEN, org=INFLUX_ORG, timeout=900_000) as client:
ensure_bucket(client, TARGET_BUCKET)
type_map = build_field_type_map_from_excel(EXCEL_PATH)
query_api = client.query_api()
write_api = client.write_api(write_options=SYNCHRONOUS)
for meas in MEASUREMENTS:
do_cast = meas in ("hp_master", "hp_slave")
cur, total = START_DT, 0
print(f"\n== {meas} (cast={'ON' if do_cast else 'OFF'}) ==")
while cur < STOP_DT:
nxt = min(cur + WINDOW, STOP_DT)
if window_already_migrated(query_api, meas, cur, nxt):
print(f"{cur.isoformat()} -> {nxt.isoformat()} : SKIP (existiert schon)")
cur = nxt
continue
n = migrate_window(query_api, write_api, meas, cur, nxt, type_map, do_cast)
total += n
print(f"{cur.isoformat()} -> {nxt.isoformat()} : {n} (gesamt {total})")
cur = nxt
print(f"== Fertig {meas}: {total} Punkte ==")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,349 @@
# load_forecaster.py
# -*- coding: utf-8 -*-
"""
LoadForecaster: builds a 36-hour forecast at 15-min resolution from InfluxDB data.
- Data source: InfluxDB (Flux query provided by user)
- Target: House load = M_AC_real - I_AC_real
- Frequency: 15 minutes (changeable via init)
- Model: Keras (LSTM by default, pluggable)
- Persistence: Saves model (H5) and scaler (joblib)
Usage (example):
from load_forecaster import LoadForecaster
import tensorflow as tf
lf = LoadForecaster(
url="http://localhost:8086",
token="<YOUR_TOKEN>",
org="<YOUR_ORG>",
bucket="allmende_db",
agg_every="15m",
input_hours=72,
output_hours=36,
model_path="model/load_forecaster.h5",
scaler_path="model/scaler.joblib",
)
# Train or retrain
lf.train_and_save(train_days=90, epochs=60)
# Load model and forecast
model = lf.load_model()
forecast_df = lf.get_15min_forecast(model)
print(forecast_df.head())
"""
from __future__ import annotations
import os
import math
import json
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import pandas as pd
from influxdb_client import InfluxDBClient
from influxdb_client.client.warnings import MissingPivotFunction
from sklearn.preprocessing import StandardScaler
from sklearn.exceptions import NotFittedError
import joblib
# TensorFlow / Keras
import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping
warnings.filterwarnings("ignore", category=MissingPivotFunction)
@dataclass
class InfluxParams:
url: str
token: str
org: str
bucket: str = "allmende_db"
class LoadForecaster:
def __init__(
self,
url: str,
token: str,
org: str,
bucket: str = "allmende_db",
agg_every: str = "15m",
input_hours: int = 72,
output_hours: int = 36,
model_path: str = "model/load_forecaster.h5",
scaler_path: str = "model/scaler.joblib",
feature_config: Optional[dict] = None,
) -> None:
self.influx = InfluxParams(url=url, token=token, org=org, bucket=bucket)
self.agg_every = agg_every
self.input_steps = int((input_hours * 60) / self._freq_minutes(agg_every))
self.output_steps = int((output_hours * 60) / self._freq_minutes(agg_every))
self.model_path = model_path
self.scaler_path = scaler_path
self.feature_config = feature_config or {"use_temp": True, "use_time_cyc": True}
self._scaler: Optional[StandardScaler] = None
# Ensure model dir exists
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# ---------------------------- Public API ---------------------------- #
def get_15min_forecast(self, model: tf.keras.Model) -> pd.DataFrame:
"""Create a 36-hour forecast at 15-min resolution using the latest data.
Assumes a StandardScaler has been fitted during training and saved.
The method uses the most recent input window from InfluxDB.
"""
# Pull just enough history for one input window
history_hours = math.ceil(self.input_steps * self._freq_minutes(self.agg_every) / 60)
df = self._query_and_prepare(range_hours=history_hours)
if len(df) < self.input_steps:
raise RuntimeError(f"Not enough data: need {self.input_steps} steps, got {len(df)}")
# Build features for the latest window
feats = self._build_features(df)
X_window = feats[-self.input_steps :]
# Load scaler
scaler = self._load_or_get_scaler()
X_scaled = scaler.transform(X_window)
# Predict
pred_scaled = model.predict(X_scaled[np.newaxis, ...], verbose=0)[0]
# Inverse transform only the target column (index 0 is Load)
# Reconstruct a full array to inverse_transform
inv = np.zeros((self.output_steps, X_scaled.shape[1]))
inv[:, 0] = pred_scaled
inv_full = scaler.inverse_transform(inv)
y_pred = inv_full[:, 0]
# Build forecast index
last_ts = df.index[-1]
freq = pd.tseries.frequencies.to_offset(self.agg_every)
idx = pd.date_range(last_ts + freq, periods=self.output_steps, freq=freq)
out = pd.DataFrame({"Forecast_Load": y_pred}, index=idx)
out.index.name = "timestamp"
return out
def train_and_save(
self,
train_days: int = 90,
epochs: int = 80,
batch_size: int = 128,
validation_split: float = 0.2,
learning_rate: float = 1e-3,
fine_tune: bool = False,
) -> tf.keras.Model:
"""Train (or fine-tune) a model from recent history and persist model + scaler."""
df = self._query_and_prepare(range_hours=24 * train_days)
feats = self._build_features(df)
# Prepare windows
X, y = self._make_windows(feats)
if len(X) < 10:
raise RuntimeError("Not enough windowed samples to train.")
# Fit scaler on full X
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
self._scaler = scaler
joblib.dump(scaler, self.scaler_path)
# Build model (or load existing for fine-tune)
if fine_tune and os.path.exists(self.model_path):
model = load_model(self.model_path)
else:
model = self._build_default_model(input_dim=X.shape[1], output_dim=self.output_steps, lr=learning_rate)
# Train
es = EarlyStopping(monitor="val_loss", patience=10, restore_best_weights=True)
model.fit(
X_scaled.reshape((-1, self.input_steps, X.shape[1] // self.input_steps)),
y,
epochs=epochs,
batch_size=batch_size,
validation_split=validation_split,
callbacks=[es],
verbose=1,
)
model.save(self.model_path)
return model
# A convenience wrapper to be called from an external script once per day
def retrain_daily(self, train_days: int = 90, epochs: int = 40, fine_tune: bool = True) -> None:
self.train_and_save(train_days=train_days, epochs=epochs, fine_tune=fine_tune)
def load_model(self) -> tf.keras.Model:
if not os.path.exists(self.model_path):
raise FileNotFoundError(f"Model not found at {self.model_path}")
return load_model(self.model_path)
# ------------------------- Internals: Data ------------------------- #
def _query_and_prepare(self, range_hours: int) -> pd.DataFrame:
"""Query InfluxDB for the last `range_hours` and construct the Load series.
Expected fields (exactly as in DB):
- "40206 - M_AC_Power"
- "40210 - M_AC_Power_SF"
- "40083 - I_AC_Power"
- "40084 - I_AC_Power_SF"
- "300 - Aussentemperatur"
"""
start_str = f"-{range_hours}h"
flux = f'''
from(bucket: "{self.influx.bucket}")
|> range(start: {start_str})
|> filter(fn: (r) => r["_measurement"] == "solaredge_meter" or r["_measurement"] == "solaredge_master" or r["_measurement"] == "hp_master")
|> filter(fn: (r) => r["_field"] == "40206 - M_AC_Power" or r["_field"] == "40210 - M_AC_Power_SF" or r["_field"] == "40083 - I_AC_Power" or r["_field"] == "40084 - I_AC_Power_SF" or r["_field"] == "300 - Aussentemperatur")
|> aggregateWindow(every: {self.agg_every}, fn: mean, createEmpty: false)
|> yield(name: "mean")
'''
with InfluxDBClient(url=self.influx.url, token=self.influx.token, org=self.influx.org) as client:
tables = client.query_api().query_data_frame(flux)
# Concatenate if list of frames is returned
if isinstance(tables, list):
df = pd.concat(tables, ignore_index=True)
else:
df = tables
# Keep relevant columns and pivot
df = df[["_time", "_field", "_value"]]
df = df.pivot(index="_time", columns="_field", values="_value").reset_index()
df = df.rename(
columns={
"_time": "timestamp",
"40206 - M_AC_Power": "M_AC",
"40210 - M_AC_Power_SF": "M_SF",
"40083 - I_AC_Power": "I_AC",
"40084 - I_AC_Power_SF": "I_SF",
"300 - Aussentemperatur": "Temp",
}
)
df = df.sort_values("timestamp").set_index("timestamp")
# Forward-fill reasonable gaps (e.g., scaler factors and temp)
df[["M_SF", "I_SF", "Temp"]] = df[["M_SF", "I_SF", "Temp"]].ffill()
# Apply scaling: real = value * 10^sf
df["I_AC_real"] = df["I_AC"] * np.power(10.0, df["I_SF"]).astype(float)
df["M_AC_real"] = df["M_AC"] * np.power(10.0, df["M_SF"]).astype(float)
# Compute load
df["Load"] = df["M_AC_real"] - df["I_AC_real"]
# Ensure regular 15-min grid
df = df.asfreq(self.agg_every)
df[["Load", "Temp"]] = df[["Load", "Temp"]].interpolate(limit_direction="both")
return df[["Load", "Temp"]]
def _build_features(self, df: pd.DataFrame) -> np.ndarray:
"""Create feature matrix: [Load, Temp?, sin/cos day, sin/cos dow]."""
feats = [df["Load"].values.reshape(-1, 1)]
if self.feature_config.get("use_temp", True):
feats.append(df["Temp"].values.reshape(-1, 1))
if self.feature_config.get("use_time_cyc", True):
idx = df.index
minute_of_day = (idx.hour * 60 + idx.minute).values.astype(float)
sod = 2 * np.pi * minute_of_day / (24 * 60)
dow = 2 * np.pi * idx.dayofweek.values.astype(float) / 7.0
feats.append(np.sin(sod).reshape(-1, 1))
feats.append(np.cos(sod).reshape(-1, 1))
feats.append(np.sin(dow).reshape(-1, 1))
feats.append(np.cos(dow).reshape(-1, 1))
X = np.hstack(feats) # shape: (T, n_features)
# Flatten windows to 2D for scaler fitting, but model expects 3D; we reshape later
return X
def _make_windows(self, X_2d: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Create sliding windows: returns (X_flat, y) where X_flat stacks the windowed features.
For Keras we later reshape X_flat -> (N, input_steps, n_features).
"""
n = X_2d.shape[0]
n_features = X_2d.shape[1]
X_list, y_list = [], []
for i in range(n - self.input_steps - self.output_steps):
xw = X_2d[i : i + self.input_steps, :]
yw = X_2d[i + self.input_steps : i + self.input_steps + self.output_steps, 0] # target: Load
X_list.append(xw.reshape(-1)) # flatten
y_list.append(yw)
X_flat = np.stack(X_list)
y = np.stack(y_list)
return X_flat, y
# ----------------------- Internals: Modeling ----------------------- #
def _build_default_model(self, input_dim: int, output_dim: int, lr: float = 1e-3) -> tf.keras.Model:
n_features = input_dim // self.input_steps
model = Sequential([
LSTM(96, input_shape=(self.input_steps, n_features), return_sequences=False),
Dropout(0.1),
Dense(output_dim)
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lr), loss="mse")
return model
def _load_or_get_scaler(self) -> StandardScaler:
if self._scaler is not None:
return self._scaler
if not os.path.exists(self.scaler_path):
raise NotFittedError("Scaler not found. Train the model first to create scaler.")
self._scaler = joblib.load(self.scaler_path)
return self._scaler
@staticmethod
def _freq_minutes(spec: str) -> int:
# supports formats like "15m", "1h"
if spec.endswith("m"):
return int(spec[:-1])
if spec.endswith("h"):
return int(spec[:-1]) * 60
raise ValueError(f"Unsupported frequency spec: {spec}")
# ----------------------------- retrain_daily.py -----------------------------
# A tiny script you can run once per day (e.g., via cron/systemd) to retrain the model.
# It delegates the work to LoadForecaster.retrain_daily().
if __name__ == "__main__":
# Read credentials/config from env vars or fill here
URL = os.getenv("INFLUX_URL", "http://localhost:8086")
TOKEN = os.getenv("INFLUX_TOKEN", "<YOUR_TOKEN>")
ORG = os.getenv("INFLUX_ORG", "<YOUR_ORG>")
BUCKET = os.getenv("INFLUX_BUCKET", "allmende_db")
lf = LoadForecaster(
url=URL,
token=TOKEN,
org=ORG,
bucket=BUCKET,
agg_every="15m",
input_hours=72,
output_hours=36,
model_path=os.getenv("FORECASTER_MODEL", "model/load_forecaster.h5"),
scaler_path=os.getenv("FORECASTER_SCALER", "model/scaler.joblib"),
)
# One call per day is enough; decrease epochs for faster daily updates
lf.retrain_daily(train_days=int(os.getenv("TRAIN_DAYS", "120")), epochs=int(os.getenv("EPOCHS", "30")), fine_tune=True)
# Optionally, produce a fresh forecast right after training
try:
model = lf.load_model()
fc = lf.get_15min_forecast(model)
# Save latest forecast to CSV for dashboards/consumers
out_path = os.getenv("FORECAST_OUT", "model/latest_forecast_15min.csv")
os.makedirs(os.path.dirname(out_path), exist_ok=True)
fc.to_csv(out_path)
print(f"Saved forecast: {out_path}")
except Exception as e:
print(f"Forecast generation failed: {e}")

View File

@@ -1,173 +1,64 @@
from pymodbus.client import ModbusTcpClient
import pandas as pd
import time
import struct
import math
class HeatPump:
def __init__(self, device_name: str, ip_address: str, port: int = 502,
excel_path: str = "modbus_registers/heat_pump_registers.xlsx",
sheet_name: str = "Register_Map"):
def __init__(self, device_name: str, ip_address: str, port: int=502):
self.device_name = device_name
self.ip = ip_address
self.port = port
self.client = ModbusTcpClient(self.ip, port=self.port)
self.client = None
self.connect_to_modbus()
self.registers = None
self.get_registers()
self.excel_path = excel_path
self.sheet_name = sheet_name
self.registers = self.get_registers()
# -------------
# Connection
# -------------
def connect(self) -> bool:
ok = self.client.connect()
if not ok:
def connect_to_modbus(self):
port = self.port
self.client = ModbusTcpClient(self.ip, port=port)
try:
if not self.client.connect():
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
return ok
def close(self):
try:
exit(1)
print("Verbindung zur Wärmepumpe erfolgreich.")
except KeyboardInterrupt:
print("Beendet durch Benutzer (Ctrl+C).")
finally:
self.client.close()
except Exception:
pass
# -------------
# Excel parsing
# -------------
def get_registers(self) -> dict:
df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
df = df[df["Register_Type"].astype(str).str.upper() == "IR"].copy()
def get_registers(self):
# Excel-Datei mit den Input-Registerinformationen
excel_path = "modbus_registers/heat_pump_registers.xlsx"
xls = pd.ExcelFile(excel_path)
df_input_registers = xls.parse('04 Input Register')
df["Address"] = df["Address"].astype(int)
df["Length"] = df["Length"].astype(int)
df["Data_Type"] = df["Data_Type"].astype(str).str.upper()
df["Byteorder"] = df["Byteorder"].astype(str).str.upper()
# Relevante Spalten bereinigen
df_clean = df_input_registers[['MB Adresse', 'Variable', 'Beschreibung', 'Variabel Typ']].dropna()
df_clean['MB Adresse'] = df_clean['MB Adresse'].astype(int)
df["Scaling"] = df.get("Scaling", 1.0)
df["Scaling"] = df["Scaling"].fillna(1.0).astype(float)
df["Offset"] = df.get("Offset", 0.0)
df["Offset"] = df["Offset"].fillna(0.0).astype(float)
regs = {}
for _, row in df.iterrows():
regs[int(row["Address"])] = {
"length": int(row["Length"]),
"data_type": row["Data_Type"],
"byteorder": row["Byteorder"],
"scaling": float(row["Scaling"]),
"offset": float(row["Offset"]),
"tag": str(row.get("Tag_Name", "")).strip(),
"desc": "" if pd.isna(row.get("Description")) else str(row.get("Description")).strip(),
# Dictionary aus Excel erzeugen
self.registers = {
row['MB Adresse']: {
'desc': row['Beschreibung'],
'type': 'REAL' if row['Variabel Typ'] == 'REAL' else 'INT'
}
for _, row in df_clean.iterrows()
}
return regs
# -------------
# Byteorder handling
# -------------
@staticmethod
def _registers_to_bytes(registers: list[int], byteorder_code: str) -> bytes:
"""
registers: Liste von uint16 (0..65535), wie pymodbus sie liefert.
byteorder_code: AB, ABCD, CDAB, BADC, DCBA (gemäß Template)
Rückgabe: bytes in der Reihenfolge, wie sie für struct.unpack benötigt werden.
"""
code = (byteorder_code or "ABCD").upper()
# Pro Register: 16-bit => zwei Bytes (MSB, LSB)
words = [struct.pack(">H", r & 0xFFFF) for r in registers] # big endian pro Wort
if len(words) == 1:
w = words[0] # b'\xAA\xBB'
if code in ("AB", "ABCD", "CDAB"):
return w
if code == "BADC": # byte swap
return w[::-1]
if code == "DCBA": # byte swap (bei 16-bit identisch zu BADC)
return w[::-1]
return w
# 32-bit (2 words) oder 64-bit (4 words): Word/Byte swaps abbilden
# words[0] = high word bytes, words[1] = low word bytes (in Modbus-Reihenfolge gelesen)
if code == "ABCD":
ordered = words
elif code == "CDAB":
# word swap
ordered = words[1:] + words[:1]
elif code == "BADC":
# byte swap innerhalb jedes Words
ordered = [w[::-1] for w in words]
elif code == "DCBA":
# word + byte swap
ordered = [w[::-1] for w in (words[1:] + words[:1])]
else:
ordered = words
return b"".join(ordered)
@staticmethod
def _decode_by_type(raw_bytes: bytes, data_type: str):
dt = (data_type or "").upper()
# struct: > = big endian, < = little endian
# Wir liefern raw_bytes bereits in der richtigen Reihenfolge; daher nutzen wir ">" konsistent.
if dt == "UINT16":
return struct.unpack(">H", raw_bytes[:2])[0]
if dt == "INT16":
return struct.unpack(">h", raw_bytes[:2])[0]
if dt == "UINT32":
return struct.unpack(">I", raw_bytes[:4])[0]
if dt == "INT32":
return struct.unpack(">i", raw_bytes[:4])[0]
if dt == "FLOAT32":
return struct.unpack(">f", raw_bytes[:4])[0]
if dt == "FLOAT64":
return struct.unpack(">d", raw_bytes[:8])[0]
raise ValueError(f"Unbekannter Data_Type: {dt}")
def _decode_value(self, registers: list[int], meta: dict):
raw = self._registers_to_bytes(registers, meta["byteorder"])
val = self._decode_by_type(raw, meta["data_type"])
return (val * meta["scaling"]) + meta["offset"]
# -------------
# Reading
# -------------
def get_state(self) -> dict:
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
if not self.connect():
data["error"] = "connect_failed"
return data
try:
for address, meta in self.registers.items():
count = int(meta["length"])
result = self.client.read_input_registers(address, count=count)
def get_state(self):
data = {}
data['Zeit'] = time.strftime('%Y-%m-%d %H:%M:%S')
for address, info in self.registers.items():
reg_type = info['type']
result = self.client.read_input_registers(address, count=2 if reg_type == 'REAL' else 1)
if result.isError():
print(f"Fehler beim Lesen von Adresse {address}: {result}")
continue
try:
value = self._decode_value(result.registers, meta)
except Exception as e:
print(f"Decode-Fehler an Adresse {address} ({meta.get('tag','')}): {e}")
continue
# Optional filter
# if self._is_invalid_sentinel(value):
# continue
value = float(value)
desc = meta.get("desc") or ""
field_name = f"{address} - {desc}".strip(" -")
data[field_name] = float(value)
print(f"Adresse {address} - {desc}: {value}")
finally:
self.close()
if reg_type == 'REAL':
value = result.registers[0] / 10.0
else:
value = result.registers[0]
print(f"Adresse {address} - {info['desc']}: {value}")
data[f"{address} - {info['desc']}"] = value
return data

View File

@@ -23,7 +23,7 @@ db = DataBaseInflux(
url="http://192.168.1.146:8086",
token="Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==",
org="allmende",
bucket="allmende_db_v3"
bucket="allmende_db"
)
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)