2 Commits

Author SHA1 Message Date
Nils Reiners
1348329a24 aktueller stand 2025-04-26 21:19:21 +01:00
Nils Reiners
e2c3d208de update data 2025-04-19 08:22:30 +01:00
24 changed files with 5160131 additions and 1311 deletions

38
README
View File

@@ -11,42 +11,10 @@ Was needs to be done on the Raspberry pi before the tool can run.
- pip install -r requirements.txt - pip install -r requirements.txt
3) How to run the script for testing: How to run the script:
nohup python main.py > terminal_log 2>&1 & - nohup python main.py > terminal_log 2>&1 &
For reading out the terminal_log while script is runing: For reading out the terminal_log while script is runing:
tail -f terminal_log - tail -f terminal_log
4) Implement and run the ems as systemd service:
create:
/etc/systemd/system/allmende_ems.service
insert:
[Unit]
Description=Allmende EMS Python Script
After=network.target
[Service]
WorkingDirectory=/home/pi/projects/allmende_ems
ExecStart=/home/pi/allmende_ems/bin/python3.11 /home/pi/projects/allmende_ems/main.py
Restart=always
RestartSec=5
StandardOutput=journal
StandardError=journal
[Install]
WantedBy=multi-user.target
manage the service with the following commands:
Once:
sudo systemctl daemon-reload
sudo systemctl start allmende_ems.service
sudo systemctl enable allmende_ems.service
While running:
sudo systemctl status allmende_ems.service
sudo systemctl restart allmende_ems.service
sudo systemctl stop allmende_ems.service
journalctl -u allmende_ems.service

View File

@@ -1,31 +0,0 @@
from pymodbus.client import ModbusTcpClient
def write_coils(ip):
# IP und Port der Wärmepumpe
port = 502
client = ModbusTcpClient(ip, port=port)
if not client.connect():
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
return
try:
# Coil 300 = Kommunikation über Bus aktivieren (1)
response_300 = client.write_coil(300, True)
# Coil 301 = SG Ready Stufe 1 aktivieren (1)
response_301 = client.write_coil(301, False)
# Coil 302 = SG Ready Stufe 2 deaktivieren (0)
response_302 = client.write_coil(302, False)
# Optional: Rückmeldungen prüfen
for addr, resp in zip([300, 301, 302], [response_300, response_301, response_302]):
if resp.isError():
print(f"Fehler beim Schreiben von Coil {addr}: {resp}")
else:
print(f"Coil {addr} erfolgreich geschrieben.")
finally:
client.close()
# Testaufruf mit IP-Adresse deiner Wärmepumpe
write_coils("10.0.0.10") # <-- IP-Adresse hier anpassen

46
data_base_csv.py Normal file
View File

@@ -0,0 +1,46 @@
import csv
import os
import tempfile
import shutil
class DataBaseCsv:
def __init__(self, filename: str):
self.filename = filename
def store_data(self, data: dict):
new_fields = list(data.keys())
# If file does not exist or is empty → create new file with header
if not os.path.exists(self.filename) or os.path.getsize(self.filename) == 0:
with open(self.filename, mode='w', newline='') as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=new_fields)
writer.writeheader()
writer.writerow(data)
return
# If file exists → read existing header and data
with open(self.filename, mode='r', newline='') as csv_file:
reader = csv.DictReader(csv_file)
existing_fields = reader.fieldnames
existing_data = list(reader)
# Merge old and new fields (keep original order, add new ones)
all_fields = existing_fields.copy()
for field in new_fields:
if field not in all_fields:
all_fields.append(field)
# Write to a temporary file with updated header
with tempfile.NamedTemporaryFile(mode='w', delete=False, newline='', encoding='utf-8') as tmp_file:
writer = csv.DictWriter(tmp_file, fieldnames=all_fields)
writer.writeheader()
# Write old rows with updated field list
for row in existing_data:
writer.writerow({field: row.get(field, '') for field in all_fields})
# Write new data row
writer.writerow({field: data.get(field, '') for field in all_fields})
# Replace original file with updated temporary file
shutil.move(tmp_file.name, self.filename)

View File

@@ -1,28 +0,0 @@
from influxdb_client import InfluxDBClient, Point, WritePrecision
from datetime import datetime
class DataBaseInflux:
def __init__(self, url: str, token: str, org: str, bucket: str):
self.url = url
self.token = token
self.org = org
self.bucket = bucket
self.client = InfluxDBClient(url=self.url, token=self.token, org=self.org)
self.write_api = self.client.write_api()
def store_data(self, device_name: str, data: dict):
measurement = device_name # Fest auf "messungen" gesetzt
point = Point(measurement)
# Alle Key/Value-Paare als Fields speichern
for key, value in data.items():
point = point.field(key, value)
# Zeitstempel automatisch auf jetzt setzen
point = point.time(datetime.utcnow(), WritePrecision.NS)
# Punkt in InfluxDB schreiben
self.write_api.write(bucket=self.bucket, org=self.org, record=point)

View File

@@ -3,17 +3,15 @@ import pandas as pd
import time import time
class HeatPump: class HeatPump:
def __init__(self, device_name: str, ip_address: str, port: int=502): def __init__(self, ip_address: str):
self.device_name = device_name
self.ip = ip_address self.ip = ip_address
self.port = port
self.client = None self.client = None
self.connect_to_modbus() self.connect_to_modbus()
self.registers = None self.registers = None
self.get_registers() self.get_registers()
def connect_to_modbus(self): def connect_to_modbus(self):
port = self.port port = 502
self.client = ModbusTcpClient(self.ip, port=port) self.client = ModbusTcpClient(self.ip, port=port)
try: try:
if not self.client.connect(): if not self.client.connect():
@@ -27,7 +25,7 @@ class HeatPump:
def get_registers(self): def get_registers(self):
# Excel-Datei mit den Input-Registerinformationen # Excel-Datei mit den Input-Registerinformationen
excel_path = "modbus_registers/heat_pump_registers.xlsx" excel_path = "data/ModBus TCPIP 1.17(1).xlsx"
xls = pd.ExcelFile(excel_path) xls = pd.ExcelFile(excel_path)
df_input_registers = xls.parse('04 Input Register') df_input_registers = xls.parse('04 Input Register')
@@ -44,7 +42,7 @@ class HeatPump:
for _, row in df_clean.iterrows() for _, row in df_clean.iterrows()
} }
def get_state(self): def get_data(self):
data = {} data = {}
data['Zeit'] = time.strftime('%Y-%m-%d %H:%M:%S') data['Zeit'] = time.strftime('%Y-%m-%d %H:%M:%S')
for address, info in self.registers.items(): for address, info in self.registers.items():

30
main.py
View File

@@ -1,35 +1,17 @@
import time import time
from datetime import datetime from datetime import datetime
from data_base_influx import DataBaseInflux from data_base_csv import DataBaseCsv
from heat_pump import HeatPump from heat_pump import HeatPump
from pv_inverter import PvInverter
from shelly_pro_3m import ShellyPro3m
# For dev-System run in terminal: ssh -N -L 127.0.0.1:8111:10.0.0.10:502 pi@192.168.1.146 interval = 10 # z.B. alle 10 Sekunden
# For productive-System change IP-adress in heatpump to '10.0.0.10' and port to 502
interval_seconds = 10 db = DataBaseCsv('modbus_log.csv')
hp = HeatPump(ip_address='10.0.0.10')
db = DataBaseInflux(
url="http://192.168.1.146:8086",
token="Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==",
org="allmende",
bucket="allmende_db"
)
hp = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr = PvInverter(device_name='wr_master', ip_address='192.168.1.112')
#controller = SgReadyController(hp, wr)
while True: while True:
now = datetime.now() now = datetime.now()
if now.second % interval_seconds == 0 and now.microsecond < 100_000: if now.second % interval == 0 and now.microsecond < 100_000:
db.store_data(hp.device_name, hp.get_state()) db.store_data(hp.get_data())
db.store_data(shelly.device_name, shelly.get_state())
db.store_data(wr.device_name, wr.get_state())
#controller.perform_action()
time.sleep(0.1) time.sleep(0.1)

File diff suppressed because one or more lines are too long

View File

@@ -1,41 +0,0 @@
# Neu laden nach Code-Reset
import pandas as pd
import matplotlib.pyplot as plt
# Pfad zur neu hochgeladenen Datei
file_path = "modbus_log.csv"
df_new = pd.read_csv(file_path)
# Zeitstempel in datetime konvertieren
df_new['Zeit'] = pd.to_datetime(df_new['Zeit'])
# Spaltenbezeichnungen für den Plot
registers = [
'10 - Gebäudeseite Wärmepumpe Vorlauf/Austritt (Warm)',
'11 - Gebäudeseite Wärmepumpe Rücklauf/Eintritt (Kalt)',
'12 - Umweltseite/Quelle Wärmepumpe Eintritt (Warm)',
'13 - Umweltseite/Quelle Wärmepumpe Austritt (Kalt)',
'50 - Rücklauftemperatur Direkterheizkreis oder Puffertemperatur',
'70 - Vorlauftemperatur Mischerkreis 1',
'150 - Trinkwarmwasserspiecher oben (Ein)',
'153 - Trinkwarmwasserspiecher unten (Aus)'
]
all_registers = ['300 - Aussentemperatur'] + registers
# Plot erzeugen
plt.figure(figsize=(14, 8))
for reg in all_registers:
plt.plot(df_new['Zeit'], df_new[reg], label=reg)
plt.title("Temperaturverläufe inkl. Außentemperatur (neue Daten)")
plt.xlabel("Zeit")
plt.ylabel("Temperatur (°C)")
plt.grid(True)
plt.tight_layout()
# Legende außerhalb des Plots platzieren
plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))
plt.subplots_adjust(right=0.75)
plt.show()

View File

@@ -1,117 +0,0 @@
import time
import struct
import pandas as pd
import matplotlib.pyplot as plt
from collections import deque
from typing import Dict, Any, List, Tuple, Optional
from pymodbus.client import ModbusTcpClient
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
class PvInverter:
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
self.device_name = device_name
self.ip = ip_address
self.port = port
self.unit = unit
self.client: Optional[ModbusTcpClient] = None
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
self.connect_to_modbus()
self.load_registers(EXCEL_PATH)
# ---------- Verbindung ----------
def connect_to_modbus(self):
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
if not self.client.connect():
print("❌ Verbindung zu Wechselrichter fehlgeschlagen.")
raise SystemExit(1)
print("✅ Verbindung zu Wechselrichter hergestellt.")
def close(self):
if self.client:
self.client.close()
self.client = None
# ---------- Register-Liste ----------
def load_registers(self, excel_path: str):
xls = pd.ExcelFile(excel_path)
df = xls.parse()
# Passen die Spaltennamen bei dir anders, bitte hier anpassen:
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
for c in cols:
if c not in df.columns:
raise ValueError(f"Spalte '{c}' fehlt in {excel_path}")
df = df[cols].dropna()
df["MB Adresse"] = df["MB Adresse"].astype(int)
# NORMALISIERE TYP
def norm_type(x: Any) -> str:
s = str(x).strip().upper()
return "REAL" if s == "REAL" else "INT"
self.registers = {
int(row["MB Adresse"]): {
"desc": str(row["Beschreibung"]).strip(),
"type": norm_type(row["Variabel Typ"])
}
for _, row in df.iterrows()
}
print(f" {len(self.registers)} Register aus Excel geladen.")
# ---------- Low-Level Lesen ----------
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
fn = getattr(self.client, fn_name)
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
for kwargs in (dict(address=address, count=count, slave=self.unit),
dict(address=address, count=count),
):
try:
res = fn(**kwargs)
if res is None or (hasattr(res, "isError") and res.isError()):
continue
return res.registers
except TypeError:
continue
return None
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
regs = self._try_read("read_holding_registers", address, count)
if regs is None:
regs = self._try_read("read_input_registers", address, count)
return regs
# ---------- Decoding ----------
@staticmethod
def _to_i16(u16: int) -> int:
return struct.unpack(">h", struct.pack(">H", u16))[0]
@staticmethod
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
if msw_first:
b = struct.pack(">HH", u16_hi, u16_lo)
else:
b = struct.pack(">HH", u16_lo, u16_hi)
return struct.unpack(">f", b)[0]
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
"""Liest einen Wert nach Typ ('INT' oder 'REAL') unter Berücksichtigung Base-1."""
addr = address_excel
if rtype == "REAL":
regs = self._read_any(addr, 2)
if not regs or len(regs) < 2:
return None
return self._to_f32_from_two(regs[0], regs[1])
else: # INT
regs = self._read_any(addr, 1)
if not regs:
return None
return float(self._to_i16(regs[0]))
def get_state(self) -> Dict[str, Any]:
"""Liest ALLE Register aus self.registers und gibt dict zurück."""
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
for address, meta in self.registers.items():
val = self.read_one(address, meta["type"])
if val is None:
continue
key = f"{address} - {meta['desc']}"
data[key] = val
return data

View File

@@ -1,4 +1,3 @@
pymodbus~=3.8.6 pymodbus~=3.8.6
pandas pandas
openpyxl openpyxl
sshtunnel

View File

@@ -1,64 +0,0 @@
import struct
from pymodbus.client import ModbusTcpClient
import pandas as pd
import time
class ShellyPro3m:
def __init__(self, device_name: str, ip_address: str, port: int=502):
self.device_name = device_name
self.ip = ip_address
self.port = port
self.client = None
self.connect_to_modbus()
self.registers = None
self.get_registers()
def connect_to_modbus(self):
port = self.port
self.client = ModbusTcpClient(self.ip, port=port)
try:
if not self.client.connect():
print("Verbindung zum Shelly-Logger fehlgeschlagen.")
exit(1)
print("Verbindung zum Shelly-Logger erfolgreich.")
except KeyboardInterrupt:
print("Beendet durch Benutzer (Ctrl+C).")
finally:
self.client.close()
def get_registers(self):
# Excel-Datei mit den Input-Registerinformationen
excel_path = "modbus_registers/shelly_pro_3m_registers.xlsx"
xls = pd.ExcelFile(excel_path)
df_input_registers = xls.parse()
# Relevante Spalten bereinigen
df_clean = df_input_registers[['MB Adresse', 'Beschreibung', 'Variabel Typ']].dropna()
df_clean['MB Adresse'] = df_clean['MB Adresse'].astype(int)
# Dictionary aus Excel erzeugen
self.registers = {
row['MB Adresse']: {
'desc': row['Beschreibung'],
'type': 'REAL' if row['Variabel Typ'] == 'REAL' else 'INT'
}
for _, row in df_clean.iterrows()
}
def get_state(self):
data = {}
data['Zeit'] = time.strftime('%Y-%m-%d %H:%M:%S')
for address, info in self.registers.items():
reg_type = info['type']
result = self.client.read_input_registers(address, count=2 if reg_type == 'REAL' else 1)
if result.isError():
print(f"Fehler beim Lesen von Adresse {address}: {result}")
continue
packed = struct.pack(">HH", result.registers[1], result.registers[0])
value = round(struct.unpack(">f", packed)[0], 2)
print(f"Adresse {address} - {info['desc']}: {value}")
data[f"{address} - {info['desc']}"] = value
return data

5108598
terminal_log

File diff suppressed because it is too large Load Diff

View File

@@ -1,61 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from pymodbus.client import ModbusTcpClient
import struct, sys
MODBUS_IP = "192.168.1.112"
MODBUS_PORT = 502
UNIT_ID = 1
METER_START = 40240 # Startadresse Model 203-Felder
def to_i16(u16): # unsigned 16 → signed 16
return struct.unpack(">h", struct.pack(">H", u16))[0]
def read_regs(client, addr, count):
rr = client.read_holding_registers(address=addr, count=count, slave=UNIT_ID)
if rr.isError():
return None
return rr.registers
def read_meter_power(client):
base = METER_START
p = read_regs(client, base + 16, 1) # M_AC_Power
pa = read_regs(client, base + 17, 1) # Phase A
pb = read_regs(client, base + 18, 1) # Phase B
pc = read_regs(client, base + 19, 1) # Phase C
sf = read_regs(client, base + 20, 1) # Scale Factor
if not p or not sf:
return None
sff = to_i16(sf[0])
return {
"total": to_i16(p[0]) * (10 ** sff),
"A": to_i16(pa[0]) * (10 ** sff) if pa else None,
"B": to_i16(pb[0]) * (10 ** sff) if pb else None,
"C": to_i16(pc[0]) * (10 ** sff) if pc else None,
"sf": sff
}
def fmt_w(v):
if v is None: return "-"
neg = v < 0
v = abs(v)
return f"{'-' if neg else ''}{v/1000:.2f} kW" if v >= 1000 else f"{'-' if neg else ''}{v:.0f} W"
def main():
client = ModbusTcpClient(MODBUS_IP, port=MODBUS_PORT)
if not client.connect():
print("❌ Verbindung fehlgeschlagen."); sys.exit(1)
try:
m = read_meter_power(client)
if m:
print(f"Meter-Leistung: {fmt_w(m['total'])} "
f"(A {fmt_w(m['A'])}, B {fmt_w(m['B'])}, C {fmt_w(m['C'])}) [SF={m['sf']}]")
else:
print("Meter-Leistung konnte nicht gelesen werden.")
finally:
client.close()
if __name__ == "__main__":
main()

View File

@@ -1,110 +0,0 @@
from pymodbus.client import ModbusTcpClient
import struct
import sys
from typing import Optional
# === Verbindungseinstellungen ===
MODBUS_IP = "192.168.1.112"
MODBUS_PORT = 502 # SetApp: 1502; LCD-Menü: 502 -> ggf. anpassen
UNIT_ID = 1 # Default laut Doku: 1
client = ModbusTcpClient(MODBUS_IP, port=MODBUS_PORT)
if not client.connect():
print("Verbindung fehlgeschlagen.")
sys.exit(1)
def read_regs(addr: int, count: int):
"""Hilfsfunktion: liest 'count' Holding-Register ab base-0 'addr'."""
rr = client.read_holding_registers(address=addr, count=count)
if rr.isError():
return None
return rr.registers
def read_string(addr: int, words: int) -> Optional[str]:
"""
SunSpec-Strings: ASCII, Big-Endian, 2 Bytes pro Register, 0x00 gepadded.
"""
regs = read_regs(addr, words)
if regs is None:
return None
b = b"".join(struct.pack(">H", r) for r in regs)
# SunSpec Strings sind meist mit \x00 und Spaces gepadded:
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
return s or None
def to_int16(u16: int) -> int:
"""unsigned 16 -> signed 16"""
return struct.unpack(">h", struct.pack(">H", u16))[0]
def apply_sf(raw: int, sf: int) -> float:
return raw * (10 ** sf)
def read_scaled(value_addr: int, sf_addr: int) -> Optional[float]:
regs = read_regs(value_addr, 1)
sf = read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
raw = to_int16(regs[0])
sff = to_int16(sf[0])
return apply_sf(raw, sff)
def read_u32_with_sf(value_addr: int, sf_addr: int) -> Optional[float]:
"""
Liest 32-bit Zähler (acc32, Big-Endian, 2 Register) + SF.
"""
regs = read_regs(value_addr, 2)
sf = read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
# Big-Endian zusammenbauen:
u32 = (regs[0] << 16) | regs[1]
sff = to_int16(sf[0])
return apply_sf(u32, sff)
# ==== Common Block (base-0) ====
manufacturer = read_string(40004, 16) # C_Manufacturer
model = read_string(40020, 16) # C_Model
version = read_string(40044, 8) # C_Version
serial = read_string(40052, 16) # C_SerialNumber
print(f"Hersteller: {manufacturer}")
print(f"Modell: {model}")
print(f"Version: {version}")
print(f"Seriennummer: {serial}")
# ==== Inverter Block (base-0) ====
# AC Power + Scale Factor
ac_power = read_scaled(40083, 40084) # I_AC_Power, I_AC_Power_SF
if ac_power is not None:
print(f"AC Power: {ac_power} W")
else:
print("Fehler beim Lesen von AC Power")
# AC Spannung L-N Durchschnitt (falls 1ph/3ph mit N verfügbar) + SF
ac_voltage = read_scaled(40079, 40082) # I_AC_VoltageAN, I_AC_Voltage_SF
if ac_voltage is not None:
print(f"AC Spannung: {ac_voltage} V")
# AC Frequenz + SF
ac_freq = read_scaled(40085, 40086) # I_AC_Frequency, _SF
if ac_freq is not None:
print(f"Frequenz: {ac_freq} Hz")
# DC Power + SF
dc_power = read_scaled(40100, 40101) # I_DC_Power, _SF
if dc_power is not None:
print(f"DC Power: {dc_power} W")
# Lifetime Energy (AC_Energy_WH, acc32) + SF
lifetime_wh = read_u32_with_sf(40093, 40095) # I_AC_Energy_WH, _SF
if lifetime_wh is not None:
print(f"Lifetime Energy: {lifetime_wh} Wh")
# Status
status_regs = read_regs(40107, 2) # I_Status, I_Status_Vendor
if status_regs:
i_status = status_regs[0]
i_status_vendor = status_regs[1]
print(f"Status: {i_status} (Vendor: {i_status_vendor})")
client.close()