3 Commits

3 changed files with 174 additions and 506 deletions

View File

@@ -1,349 +0,0 @@
# load_forecaster.py
# -*- coding: utf-8 -*-
"""
LoadForecaster: builds a 36-hour forecast at 15-min resolution from InfluxDB data.
- Data source: InfluxDB (Flux query provided by user)
- Target: House load = M_AC_real - I_AC_real
- Frequency: 15 minutes (changeable via init)
- Model: Keras (LSTM by default, pluggable)
- Persistence: Saves model (H5) and scaler (joblib)
Usage (example):
from load_forecaster import LoadForecaster
import tensorflow as tf
lf = LoadForecaster(
url="http://localhost:8086",
token="<YOUR_TOKEN>",
org="<YOUR_ORG>",
bucket="allmende_db",
agg_every="15m",
input_hours=72,
output_hours=36,
model_path="model/load_forecaster.h5",
scaler_path="model/scaler.joblib",
)
# Train or retrain
lf.train_and_save(train_days=90, epochs=60)
# Load model and forecast
model = lf.load_model()
forecast_df = lf.get_15min_forecast(model)
print(forecast_df.head())
"""
from __future__ import annotations
import os
import math
import json
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import pandas as pd
from influxdb_client import InfluxDBClient
from influxdb_client.client.warnings import MissingPivotFunction
from sklearn.preprocessing import StandardScaler
from sklearn.exceptions import NotFittedError
import joblib
# TensorFlow / Keras
import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping
warnings.filterwarnings("ignore", category=MissingPivotFunction)
@dataclass
class InfluxParams:
url: str
token: str
org: str
bucket: str = "allmende_db"
class LoadForecaster:
def __init__(
self,
url: str,
token: str,
org: str,
bucket: str = "allmende_db",
agg_every: str = "15m",
input_hours: int = 72,
output_hours: int = 36,
model_path: str = "model/load_forecaster.h5",
scaler_path: str = "model/scaler.joblib",
feature_config: Optional[dict] = None,
) -> None:
self.influx = InfluxParams(url=url, token=token, org=org, bucket=bucket)
self.agg_every = agg_every
self.input_steps = int((input_hours * 60) / self._freq_minutes(agg_every))
self.output_steps = int((output_hours * 60) / self._freq_minutes(agg_every))
self.model_path = model_path
self.scaler_path = scaler_path
self.feature_config = feature_config or {"use_temp": True, "use_time_cyc": True}
self._scaler: Optional[StandardScaler] = None
# Ensure model dir exists
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# ---------------------------- Public API ---------------------------- #
def get_15min_forecast(self, model: tf.keras.Model) -> pd.DataFrame:
"""Create a 36-hour forecast at 15-min resolution using the latest data.
Assumes a StandardScaler has been fitted during training and saved.
The method uses the most recent input window from InfluxDB.
"""
# Pull just enough history for one input window
history_hours = math.ceil(self.input_steps * self._freq_minutes(self.agg_every) / 60)
df = self._query_and_prepare(range_hours=history_hours)
if len(df) < self.input_steps:
raise RuntimeError(f"Not enough data: need {self.input_steps} steps, got {len(df)}")
# Build features for the latest window
feats = self._build_features(df)
X_window = feats[-self.input_steps :]
# Load scaler
scaler = self._load_or_get_scaler()
X_scaled = scaler.transform(X_window)
# Predict
pred_scaled = model.predict(X_scaled[np.newaxis, ...], verbose=0)[0]
# Inverse transform only the target column (index 0 is Load)
# Reconstruct a full array to inverse_transform
inv = np.zeros((self.output_steps, X_scaled.shape[1]))
inv[:, 0] = pred_scaled
inv_full = scaler.inverse_transform(inv)
y_pred = inv_full[:, 0]
# Build forecast index
last_ts = df.index[-1]
freq = pd.tseries.frequencies.to_offset(self.agg_every)
idx = pd.date_range(last_ts + freq, periods=self.output_steps, freq=freq)
out = pd.DataFrame({"Forecast_Load": y_pred}, index=idx)
out.index.name = "timestamp"
return out
def train_and_save(
self,
train_days: int = 90,
epochs: int = 80,
batch_size: int = 128,
validation_split: float = 0.2,
learning_rate: float = 1e-3,
fine_tune: bool = False,
) -> tf.keras.Model:
"""Train (or fine-tune) a model from recent history and persist model + scaler."""
df = self._query_and_prepare(range_hours=24 * train_days)
feats = self._build_features(df)
# Prepare windows
X, y = self._make_windows(feats)
if len(X) < 10:
raise RuntimeError("Not enough windowed samples to train.")
# Fit scaler on full X
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
self._scaler = scaler
joblib.dump(scaler, self.scaler_path)
# Build model (or load existing for fine-tune)
if fine_tune and os.path.exists(self.model_path):
model = load_model(self.model_path)
else:
model = self._build_default_model(input_dim=X.shape[1], output_dim=self.output_steps, lr=learning_rate)
# Train
es = EarlyStopping(monitor="val_loss", patience=10, restore_best_weights=True)
model.fit(
X_scaled.reshape((-1, self.input_steps, X.shape[1] // self.input_steps)),
y,
epochs=epochs,
batch_size=batch_size,
validation_split=validation_split,
callbacks=[es],
verbose=1,
)
model.save(self.model_path)
return model
# A convenience wrapper to be called from an external script once per day
def retrain_daily(self, train_days: int = 90, epochs: int = 40, fine_tune: bool = True) -> None:
self.train_and_save(train_days=train_days, epochs=epochs, fine_tune=fine_tune)
def load_model(self) -> tf.keras.Model:
if not os.path.exists(self.model_path):
raise FileNotFoundError(f"Model not found at {self.model_path}")
return load_model(self.model_path)
# ------------------------- Internals: Data ------------------------- #
def _query_and_prepare(self, range_hours: int) -> pd.DataFrame:
"""Query InfluxDB for the last `range_hours` and construct the Load series.
Expected fields (exactly as in DB):
- "40206 - M_AC_Power"
- "40210 - M_AC_Power_SF"
- "40083 - I_AC_Power"
- "40084 - I_AC_Power_SF"
- "300 - Aussentemperatur"
"""
start_str = f"-{range_hours}h"
flux = f'''
from(bucket: "{self.influx.bucket}")
|> range(start: {start_str})
|> filter(fn: (r) => r["_measurement"] == "solaredge_meter" or r["_measurement"] == "solaredge_master" or r["_measurement"] == "hp_master")
|> filter(fn: (r) => r["_field"] == "40206 - M_AC_Power" or r["_field"] == "40210 - M_AC_Power_SF" or r["_field"] == "40083 - I_AC_Power" or r["_field"] == "40084 - I_AC_Power_SF" or r["_field"] == "300 - Aussentemperatur")
|> aggregateWindow(every: {self.agg_every}, fn: mean, createEmpty: false)
|> yield(name: "mean")
'''
with InfluxDBClient(url=self.influx.url, token=self.influx.token, org=self.influx.org) as client:
tables = client.query_api().query_data_frame(flux)
# Concatenate if list of frames is returned
if isinstance(tables, list):
df = pd.concat(tables, ignore_index=True)
else:
df = tables
# Keep relevant columns and pivot
df = df[["_time", "_field", "_value"]]
df = df.pivot(index="_time", columns="_field", values="_value").reset_index()
df = df.rename(
columns={
"_time": "timestamp",
"40206 - M_AC_Power": "M_AC",
"40210 - M_AC_Power_SF": "M_SF",
"40083 - I_AC_Power": "I_AC",
"40084 - I_AC_Power_SF": "I_SF",
"300 - Aussentemperatur": "Temp",
}
)
df = df.sort_values("timestamp").set_index("timestamp")
# Forward-fill reasonable gaps (e.g., scaler factors and temp)
df[["M_SF", "I_SF", "Temp"]] = df[["M_SF", "I_SF", "Temp"]].ffill()
# Apply scaling: real = value * 10^sf
df["I_AC_real"] = df["I_AC"] * np.power(10.0, df["I_SF"]).astype(float)
df["M_AC_real"] = df["M_AC"] * np.power(10.0, df["M_SF"]).astype(float)
# Compute load
df["Load"] = df["M_AC_real"] - df["I_AC_real"]
# Ensure regular 15-min grid
df = df.asfreq(self.agg_every)
df[["Load", "Temp"]] = df[["Load", "Temp"]].interpolate(limit_direction="both")
return df[["Load", "Temp"]]
def _build_features(self, df: pd.DataFrame) -> np.ndarray:
"""Create feature matrix: [Load, Temp?, sin/cos day, sin/cos dow]."""
feats = [df["Load"].values.reshape(-1, 1)]
if self.feature_config.get("use_temp", True):
feats.append(df["Temp"].values.reshape(-1, 1))
if self.feature_config.get("use_time_cyc", True):
idx = df.index
minute_of_day = (idx.hour * 60 + idx.minute).values.astype(float)
sod = 2 * np.pi * minute_of_day / (24 * 60)
dow = 2 * np.pi * idx.dayofweek.values.astype(float) / 7.0
feats.append(np.sin(sod).reshape(-1, 1))
feats.append(np.cos(sod).reshape(-1, 1))
feats.append(np.sin(dow).reshape(-1, 1))
feats.append(np.cos(dow).reshape(-1, 1))
X = np.hstack(feats) # shape: (T, n_features)
# Flatten windows to 2D for scaler fitting, but model expects 3D; we reshape later
return X
def _make_windows(self, X_2d: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Create sliding windows: returns (X_flat, y) where X_flat stacks the windowed features.
For Keras we later reshape X_flat -> (N, input_steps, n_features).
"""
n = X_2d.shape[0]
n_features = X_2d.shape[1]
X_list, y_list = [], []
for i in range(n - self.input_steps - self.output_steps):
xw = X_2d[i : i + self.input_steps, :]
yw = X_2d[i + self.input_steps : i + self.input_steps + self.output_steps, 0] # target: Load
X_list.append(xw.reshape(-1)) # flatten
y_list.append(yw)
X_flat = np.stack(X_list)
y = np.stack(y_list)
return X_flat, y
# ----------------------- Internals: Modeling ----------------------- #
def _build_default_model(self, input_dim: int, output_dim: int, lr: float = 1e-3) -> tf.keras.Model:
n_features = input_dim // self.input_steps
model = Sequential([
LSTM(96, input_shape=(self.input_steps, n_features), return_sequences=False),
Dropout(0.1),
Dense(output_dim)
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lr), loss="mse")
return model
def _load_or_get_scaler(self) -> StandardScaler:
if self._scaler is not None:
return self._scaler
if not os.path.exists(self.scaler_path):
raise NotFittedError("Scaler not found. Train the model first to create scaler.")
self._scaler = joblib.load(self.scaler_path)
return self._scaler
@staticmethod
def _freq_minutes(spec: str) -> int:
# supports formats like "15m", "1h"
if spec.endswith("m"):
return int(spec[:-1])
if spec.endswith("h"):
return int(spec[:-1]) * 60
raise ValueError(f"Unsupported frequency spec: {spec}")
# ----------------------------- retrain_daily.py -----------------------------
# A tiny script you can run once per day (e.g., via cron/systemd) to retrain the model.
# It delegates the work to LoadForecaster.retrain_daily().
if __name__ == "__main__":
# Read credentials/config from env vars or fill here
URL = os.getenv("INFLUX_URL", "http://localhost:8086")
TOKEN = os.getenv("INFLUX_TOKEN", "<YOUR_TOKEN>")
ORG = os.getenv("INFLUX_ORG", "<YOUR_ORG>")
BUCKET = os.getenv("INFLUX_BUCKET", "allmende_db")
lf = LoadForecaster(
url=URL,
token=TOKEN,
org=ORG,
bucket=BUCKET,
agg_every="15m",
input_hours=72,
output_hours=36,
model_path=os.getenv("FORECASTER_MODEL", "model/load_forecaster.h5"),
scaler_path=os.getenv("FORECASTER_SCALER", "model/scaler.joblib"),
)
# One call per day is enough; decrease epochs for faster daily updates
lf.retrain_daily(train_days=int(os.getenv("TRAIN_DAYS", "120")), epochs=int(os.getenv("EPOCHS", "30")), fine_tune=True)
# Optionally, produce a fresh forecast right after training
try:
model = lf.load_model()
fc = lf.get_15min_forecast(model)
# Save latest forecast to CSV for dashboards/consumers
out_path = os.getenv("FORECAST_OUT", "model/latest_forecast_15min.csv")
os.makedirs(os.path.dirname(out_path), exist_ok=True)
fc.to_csv(out_path)
print(f"Saved forecast: {out_path}")
except Exception as e:
print(f"Forecast generation failed: {e}")

87
main.py
View File

@@ -26,56 +26,57 @@ db = DataBaseInflux(
bucket="allmende_db"
)
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112')
# hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
# hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
# shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr_master = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112', unit=1)
wr_slave = PvInverter(device_name='solaredge_slave', ip_address='192.168.1.112', unit=3)
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
es.add_components(hp_master, hp_slave, shelly, wr, meter)
controller = SgReadyController(es)
# FORECASTING
latitude = 48.041
longitude = 7.862
TZ = "Europe/Berlin"
HORIZON_DAYS = 2
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
p_module = 435
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
pv_plant = PvWattsPlant(site, cfgs)
now = datetime.now()
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
es.add_components(wr_master, wr_slave)#hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
# controller = SgReadyController(es)
#
# # FORECASTING
# latitude = 48.041
# longitude = 7.862
# TZ = "Europe/Berlin"
# HORIZON_DAYS = 2
# weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
# site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
#
# p_module = 435
# upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
# upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
# upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
# upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
# cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
# pv_plant = PvWattsPlant(site, cfgs)
#
# now = datetime.now()
# next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
while True:
now = datetime.now()
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
state = es.get_state_and_store_to_database(db)
mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
# mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
#
# if mode == 'mode1':
# mode_as_binary = 0
# else:
# mode_as_binary = 1
# db.store_data('sg_ready', {'mode': mode_as_binary})
if mode == 'mode1':
mode_as_binary = 0
else:
mode_as_binary = 1
db.store_data('sg_ready', {'mode': mode_as_binary})
if now >= next_forecast_at:
# Start der Prognose: ab der kommenden vollen Stunde
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
total = pv_plant.get_power(weather)
db.store_forecasts('pv_forecast', total)
# Nächste geplante Ausführung definieren (immer volle Stunde)
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
while next_forecast_at <= now:
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
# if now >= next_forecast_at:
# # Start der Prognose: ab der kommenden vollen Stunde
# start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
# weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
# total = pv_plant.get_power(weather)
# db.store_forecasts('pv_forecast', total)
#
# # Nächste geplante Ausführung definieren (immer volle Stunde)
# # Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
# while next_forecast_at <= now:
# next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
time.sleep(0.1)

View File

@@ -1,139 +1,155 @@
import time
import struct
import pandas as pd
from typing import Dict, Any, List, Tuple, Optional
# pv_inverter.py
# -*- coding: utf-8 -*-
from typing import Optional, Dict, Any, List
from pymodbus.client import ModbusTcpClient
from pymodbus.exceptions import ModbusIOException
import struct
import time
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
# Obergrenze: bis EXKLUSIVE 40206 (d.h. max. 40205)
MAX_ADDR_EXCLUSIVE = 40121
class PvInverter:
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
self.device_name = device_name
self.ip = ip_address
self.port = port
self.unit = unit
self.client: Optional[ModbusTcpClient] = None
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
self.connect_to_modbus()
self.load_registers(EXCEL_PATH)
"""
Minimaler Reader für einen SolarEdge-Inverter hinter Modbus-TCP→RTU-Gateway.
Liest nur die bekannten Register (wie im funktionierenden Skript).
Kompatibel mit pymodbus 2.5.x und 3.x kein retry_on_empty.
"""
# ---------- Verbindung ----------
def connect_to_modbus(self):
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
def __init__(
self,
device_name: str,
ip_address: str,
port: int = 502,
unit_id: int = 1,
timeout: float = 1.5,
silent_interval: float = 0.02,
):
self.device_name = device_name
self.host = ip_address
self.port = port
self.unit = unit_id
self.timeout = timeout
self.silent_interval = silent_interval
self.client: Optional[ModbusTcpClient] = None
self._connect()
# ---------------- Verbindung ----------------
def _connect(self):
# retries=0: keine internen Mehrfachversuche
self.client = ModbusTcpClient(self.host, port=self.port, timeout=self.timeout, retries=0)
if not self.client.connect():
print("Verbindung zu Wechselrichter fehlgeschlagen.")
raise SystemExit(1)
print("✅ Verbindung zu Wechselrichter hergestellt.")
raise ConnectionError(f"Verbindung zu {self.device_name} ({self.host}:{self.port}) fehlgeschlagen.")
print(f"✅ Verbindung hergestellt zu {self.device_name} ({self.host}:{self.port}, unit={self.unit})")
def close(self):
if self.client:
self.client.close()
self.client = None
# ---------- Register-Liste ----------
def load_registers(self, excel_path: str):
xls = pd.ExcelFile(excel_path)
df = xls.parse()
# Passe Spaltennamen hier an, falls nötig:
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
df = df[cols].dropna()
df["MB Adresse"] = df["MB Adresse"].astype(int)
# 1) Vorab-Filter: nur Adressen < 40206 übernehmen
df = df[df["MB Adresse"] < MAX_ADDR_EXCLUSIVE]
self.registers = {
int(row["MB Adresse"]): {
"desc": str(row["Beschreibung"]).strip(),
"type": str(row["Variabel Typ"]).strip()
}
for _, row in df.iterrows()
}
# ---------- Low-Level Lesen ----------
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
fn = getattr(self.client, fn_name)
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
for kwargs in (dict(address=address, count=count, slave=self.unit),
dict(address=address, count=count)):
# ---------------- Low-Level Lesen ----------------
def _read_regs(self, addr: int, count: int) -> Optional[List[int]]:
"""Liest 'count' Holding-Register ab base-0 'addr' für die konfigurierte Unit-ID."""
try:
res = fn(**kwargs)
if res is None or (hasattr(res, "isError") and res.isError()):
continue
return res.registers
except TypeError:
continue
rr = self.client.read_holding_registers(address=addr, count=count, slave=self.unit)
except ModbusIOException:
time.sleep(self.silent_interval)
return None
except Exception:
time.sleep(self.silent_interval)
return None
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
regs = self._try_read("read_holding_registers", address, count)
if regs is None:
regs = self._try_read("read_input_registers", address, count)
return regs
time.sleep(self.silent_interval)
if not rr or rr.isError():
return None
return rr.registers
# ---------- Decoding ----------
@staticmethod
def _to_i16(u16: int) -> int:
def _to_int16(u16: int) -> int:
return struct.unpack(">h", struct.pack(">H", u16))[0]
@staticmethod
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
b = struct.pack(">HH", u16_hi, u16_lo) if msw_first else struct.pack(">HH", u16_lo, u16_hi)
return struct.unpack(">f", b)[0]
def _apply_sf(raw: int, sf: int) -> float:
return raw * (10 ** sf)
# Hilfsfunktion: wie viele 16-Bit-Register braucht dieser Typ?
@staticmethod
def _word_count_for_type(rtype: str) -> int:
rt = (rtype or "").lower()
# Passe hier an deine Excel-Typen an:
if "uint32" in rt or "real" in rt or "float" in rt or "string(32)" in rt:
return 2
# Default: 1 Wort (z.B. int16/uint16)
return 1
def _read_string_from_regs(regs: List[int]) -> Optional[str]:
b = b"".join(struct.pack(">H", r) for r in regs)
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
return s or None
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
"""
Liest einen Wert nach Typ ('INT' oder 'REAL' etc.).
Es werden ausschließlich Register < 40206 gelesen.
"""
addr = int(address_excel)
words = self._word_count_for_type(rtype)
# 2) Harte Grenze prüfen: höchstes angefasstes Register muss < 40206 sein
if addr + words - 1 >= MAX_ADDR_EXCLUSIVE:
# Überspringen, da der Lesevorgang die Grenze >= 40206 berühren würde
# ---------------- Hilfsfunktionen ----------------
def _read_string(self, addr: int, words: int) -> Optional[str]:
regs = self._read_regs(addr, words)
if regs is None:
return None
return self._read_string_from_regs(regs)
if words == 2:
regs = self._read_any(addr, 2)
if not regs or len(regs) < 2:
def _read_scaled(self, value_addr: int, sf_addr: int) -> Optional[float]:
regs = self._read_regs(value_addr, 1)
sf = self._read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
# Deine bisherige Logik interpretiert 2 Worte als Float32:
return self._to_f32_from_two(regs[0], regs[1])
else:
regs = self._read_any(addr, 1)
if not regs:
return None
return float(self._to_i16(regs[0]))
raw = self._to_int16(regs[0])
sff = self._to_int16(sf[0])
return self._apply_sf(raw, sff)
def _read_u32_with_sf(self, value_addr: int, sf_addr: int) -> Optional[float]:
regs = self._read_regs(value_addr, 2)
sf = self._read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
u32 = (regs[0] << 16) | regs[1]
sff = self._to_int16(sf[0])
return self._apply_sf(u32, sff)
# ---------------- Öffentliche API ----------------
def get_state(self) -> Dict[str, Any]:
"""
Liest ALLE Register aus self.registers und gibt dict zurück.
Achtet darauf, dass keine Adresse (inkl. Mehrwort) >= 40206 gelesen wird.
"""
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
for address, meta in sorted(self.registers.items()):
words = self._word_count_for_type(meta["type"])
# 3) Nochmals Schutz auf Ebene der Iteration:
if address + words - 1 >= MAX_ADDR_EXCLUSIVE:
continue
val = self.read_one(address, meta["type"])
if val is None:
continue
key = f"{address} - {meta['desc']}"
data[key] = val
return data
"""Liest exakt die bekannten Register und gibt ein Dict zurück."""
state: Dict[str, Any] = {}
# --- Common Block ---
state["C_Manufacturer"] = self._read_string(40004, 16)
state["C_Model"] = self._read_string(40020, 16)
state["C_Version"] = self._read_string(40044, 8)
state["C_SerialNumber"] = self._read_string(40052, 16)
# --- Inverter Block ---
state["I_AC_Power_W"] = self._read_scaled(40083, 40084)
state["I_AC_Voltage_V"] = self._read_scaled(40079, 40082)
state["I_AC_Frequency_Hz"] = self._read_scaled(40085, 40086)
state["I_DC_Power_W"] = self._read_scaled(40100, 40101)
state["I_AC_Energy_Wh_total"] = self._read_u32_with_sf(40093, 40095)
status_regs = self._read_regs(40107, 2)
if status_regs:
state["I_Status"] = status_regs[0]
state["I_Status_Vendor"] = status_regs[1]
else:
state["I_Status"] = None
state["I_Status_Vendor"] = None
return state
# ---------------- Beispiel ----------------
if __name__ == "__main__":
MODBUS_IP = "192.168.1.112"
MODBUS_PORT = 502
master = PvInverter("solaredge_master", MODBUS_IP, port=MODBUS_PORT, unit_id=1)
slave = PvInverter("solaredge_slave", MODBUS_IP, port=MODBUS_PORT, unit_id=3)
try:
sm = master.get_state()
ss = slave.get_state()
print("\n=== MASTER ===")
for k, v in sm.items():
print(f"{k:22s}: {v}")
print("\n=== SLAVE ===")
for k, v in ss.items():
print(f"{k:22s}: {v}")
finally:
master.close()
slave.close()