Compare commits
3 Commits
load_forec
...
4af2460736
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4af2460736 | ||
|
|
38116390df | ||
|
|
5827b494b5 |
@@ -1,349 +0,0 @@
|
||||
# load_forecaster.py
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
LoadForecaster: builds a 36-hour forecast at 15-min resolution from InfluxDB data.
|
||||
|
||||
- Data source: InfluxDB (Flux query provided by user)
|
||||
- Target: House load = M_AC_real - I_AC_real
|
||||
- Frequency: 15 minutes (changeable via init)
|
||||
- Model: Keras (LSTM by default, pluggable)
|
||||
- Persistence: Saves model (H5) and scaler (joblib)
|
||||
|
||||
Usage (example):
|
||||
|
||||
from load_forecaster import LoadForecaster
|
||||
import tensorflow as tf
|
||||
|
||||
lf = LoadForecaster(
|
||||
url="http://localhost:8086",
|
||||
token="<YOUR_TOKEN>",
|
||||
org="<YOUR_ORG>",
|
||||
bucket="allmende_db",
|
||||
agg_every="15m",
|
||||
input_hours=72,
|
||||
output_hours=36,
|
||||
model_path="model/load_forecaster.h5",
|
||||
scaler_path="model/scaler.joblib",
|
||||
)
|
||||
|
||||
# Train or retrain
|
||||
lf.train_and_save(train_days=90, epochs=60)
|
||||
|
||||
# Load model and forecast
|
||||
model = lf.load_model()
|
||||
forecast_df = lf.get_15min_forecast(model)
|
||||
print(forecast_df.head())
|
||||
|
||||
"""
|
||||
from __future__ import annotations
|
||||
import os
|
||||
import math
|
||||
import json
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from influxdb_client import InfluxDBClient
|
||||
from influxdb_client.client.warnings import MissingPivotFunction
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.exceptions import NotFittedError
|
||||
import joblib
|
||||
|
||||
# TensorFlow / Keras
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.models import Sequential, load_model
|
||||
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
|
||||
warnings.filterwarnings("ignore", category=MissingPivotFunction)
|
||||
|
||||
@dataclass
|
||||
class InfluxParams:
|
||||
url: str
|
||||
token: str
|
||||
org: str
|
||||
bucket: str = "allmende_db"
|
||||
|
||||
class LoadForecaster:
|
||||
def __init__(
|
||||
self,
|
||||
url: str,
|
||||
token: str,
|
||||
org: str,
|
||||
bucket: str = "allmende_db",
|
||||
agg_every: str = "15m",
|
||||
input_hours: int = 72,
|
||||
output_hours: int = 36,
|
||||
model_path: str = "model/load_forecaster.h5",
|
||||
scaler_path: str = "model/scaler.joblib",
|
||||
feature_config: Optional[dict] = None,
|
||||
) -> None:
|
||||
self.influx = InfluxParams(url=url, token=token, org=org, bucket=bucket)
|
||||
self.agg_every = agg_every
|
||||
self.input_steps = int((input_hours * 60) / self._freq_minutes(agg_every))
|
||||
self.output_steps = int((output_hours * 60) / self._freq_minutes(agg_every))
|
||||
self.model_path = model_path
|
||||
self.scaler_path = scaler_path
|
||||
self.feature_config = feature_config or {"use_temp": True, "use_time_cyc": True}
|
||||
self._scaler: Optional[StandardScaler] = None
|
||||
|
||||
# Ensure model dir exists
|
||||
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
||||
|
||||
# ---------------------------- Public API ---------------------------- #
|
||||
def get_15min_forecast(self, model: tf.keras.Model) -> pd.DataFrame:
|
||||
"""Create a 36-hour forecast at 15-min resolution using the latest data.
|
||||
Assumes a StandardScaler has been fitted during training and saved.
|
||||
The method uses the most recent input window from InfluxDB.
|
||||
"""
|
||||
# Pull just enough history for one input window
|
||||
history_hours = math.ceil(self.input_steps * self._freq_minutes(self.agg_every) / 60)
|
||||
df = self._query_and_prepare(range_hours=history_hours)
|
||||
if len(df) < self.input_steps:
|
||||
raise RuntimeError(f"Not enough data: need {self.input_steps} steps, got {len(df)}")
|
||||
|
||||
# Build features for the latest window
|
||||
feats = self._build_features(df)
|
||||
X_window = feats[-self.input_steps :]
|
||||
|
||||
# Load scaler
|
||||
scaler = self._load_or_get_scaler()
|
||||
X_scaled = scaler.transform(X_window)
|
||||
|
||||
# Predict
|
||||
pred_scaled = model.predict(X_scaled[np.newaxis, ...], verbose=0)[0]
|
||||
|
||||
# Inverse transform only the target column (index 0 is Load)
|
||||
# Reconstruct a full array to inverse_transform
|
||||
inv = np.zeros((self.output_steps, X_scaled.shape[1]))
|
||||
inv[:, 0] = pred_scaled
|
||||
inv_full = scaler.inverse_transform(inv)
|
||||
y_pred = inv_full[:, 0]
|
||||
|
||||
# Build forecast index
|
||||
last_ts = df.index[-1]
|
||||
freq = pd.tseries.frequencies.to_offset(self.agg_every)
|
||||
idx = pd.date_range(last_ts + freq, periods=self.output_steps, freq=freq)
|
||||
out = pd.DataFrame({"Forecast_Load": y_pred}, index=idx)
|
||||
out.index.name = "timestamp"
|
||||
return out
|
||||
|
||||
def train_and_save(
|
||||
self,
|
||||
train_days: int = 90,
|
||||
epochs: int = 80,
|
||||
batch_size: int = 128,
|
||||
validation_split: float = 0.2,
|
||||
learning_rate: float = 1e-3,
|
||||
fine_tune: bool = False,
|
||||
) -> tf.keras.Model:
|
||||
"""Train (or fine-tune) a model from recent history and persist model + scaler."""
|
||||
df = self._query_and_prepare(range_hours=24 * train_days)
|
||||
feats = self._build_features(df)
|
||||
|
||||
# Prepare windows
|
||||
X, y = self._make_windows(feats)
|
||||
if len(X) < 10:
|
||||
raise RuntimeError("Not enough windowed samples to train.")
|
||||
|
||||
# Fit scaler on full X
|
||||
scaler = StandardScaler()
|
||||
X_scaled = scaler.fit_transform(X)
|
||||
self._scaler = scaler
|
||||
joblib.dump(scaler, self.scaler_path)
|
||||
|
||||
# Build model (or load existing for fine-tune)
|
||||
if fine_tune and os.path.exists(self.model_path):
|
||||
model = load_model(self.model_path)
|
||||
else:
|
||||
model = self._build_default_model(input_dim=X.shape[1], output_dim=self.output_steps, lr=learning_rate)
|
||||
|
||||
# Train
|
||||
es = EarlyStopping(monitor="val_loss", patience=10, restore_best_weights=True)
|
||||
model.fit(
|
||||
X_scaled.reshape((-1, self.input_steps, X.shape[1] // self.input_steps)),
|
||||
y,
|
||||
epochs=epochs,
|
||||
batch_size=batch_size,
|
||||
validation_split=validation_split,
|
||||
callbacks=[es],
|
||||
verbose=1,
|
||||
)
|
||||
|
||||
model.save(self.model_path)
|
||||
return model
|
||||
|
||||
# A convenience wrapper to be called from an external script once per day
|
||||
def retrain_daily(self, train_days: int = 90, epochs: int = 40, fine_tune: bool = True) -> None:
|
||||
self.train_and_save(train_days=train_days, epochs=epochs, fine_tune=fine_tune)
|
||||
|
||||
def load_model(self) -> tf.keras.Model:
|
||||
if not os.path.exists(self.model_path):
|
||||
raise FileNotFoundError(f"Model not found at {self.model_path}")
|
||||
return load_model(self.model_path)
|
||||
|
||||
# ------------------------- Internals: Data ------------------------- #
|
||||
def _query_and_prepare(self, range_hours: int) -> pd.DataFrame:
|
||||
"""Query InfluxDB for the last `range_hours` and construct the Load series.
|
||||
Expected fields (exactly as in DB):
|
||||
- "40206 - M_AC_Power"
|
||||
- "40210 - M_AC_Power_SF"
|
||||
- "40083 - I_AC_Power"
|
||||
- "40084 - I_AC_Power_SF"
|
||||
- "300 - Aussentemperatur"
|
||||
"""
|
||||
start_str = f"-{range_hours}h"
|
||||
flux = f'''
|
||||
from(bucket: "{self.influx.bucket}")
|
||||
|> range(start: {start_str})
|
||||
|> filter(fn: (r) => r["_measurement"] == "solaredge_meter" or r["_measurement"] == "solaredge_master" or r["_measurement"] == "hp_master")
|
||||
|> filter(fn: (r) => r["_field"] == "40206 - M_AC_Power" or r["_field"] == "40210 - M_AC_Power_SF" or r["_field"] == "40083 - I_AC_Power" or r["_field"] == "40084 - I_AC_Power_SF" or r["_field"] == "300 - Aussentemperatur")
|
||||
|> aggregateWindow(every: {self.agg_every}, fn: mean, createEmpty: false)
|
||||
|> yield(name: "mean")
|
||||
'''
|
||||
with InfluxDBClient(url=self.influx.url, token=self.influx.token, org=self.influx.org) as client:
|
||||
tables = client.query_api().query_data_frame(flux)
|
||||
|
||||
# Concatenate if list of frames is returned
|
||||
if isinstance(tables, list):
|
||||
df = pd.concat(tables, ignore_index=True)
|
||||
else:
|
||||
df = tables
|
||||
|
||||
# Keep relevant columns and pivot
|
||||
df = df[["_time", "_field", "_value"]]
|
||||
df = df.pivot(index="_time", columns="_field", values="_value").reset_index()
|
||||
df = df.rename(
|
||||
columns={
|
||||
"_time": "timestamp",
|
||||
"40206 - M_AC_Power": "M_AC",
|
||||
"40210 - M_AC_Power_SF": "M_SF",
|
||||
"40083 - I_AC_Power": "I_AC",
|
||||
"40084 - I_AC_Power_SF": "I_SF",
|
||||
"300 - Aussentemperatur": "Temp",
|
||||
}
|
||||
)
|
||||
df = df.sort_values("timestamp").set_index("timestamp")
|
||||
|
||||
# Forward-fill reasonable gaps (e.g., scaler factors and temp)
|
||||
df[["M_SF", "I_SF", "Temp"]] = df[["M_SF", "I_SF", "Temp"]].ffill()
|
||||
|
||||
# Apply scaling: real = value * 10^sf
|
||||
df["I_AC_real"] = df["I_AC"] * np.power(10.0, df["I_SF"]).astype(float)
|
||||
df["M_AC_real"] = df["M_AC"] * np.power(10.0, df["M_SF"]).astype(float)
|
||||
|
||||
# Compute load
|
||||
df["Load"] = df["M_AC_real"] - df["I_AC_real"]
|
||||
|
||||
# Ensure regular 15-min grid
|
||||
df = df.asfreq(self.agg_every)
|
||||
df[["Load", "Temp"]] = df[["Load", "Temp"]].interpolate(limit_direction="both")
|
||||
|
||||
return df[["Load", "Temp"]]
|
||||
|
||||
def _build_features(self, df: pd.DataFrame) -> np.ndarray:
|
||||
"""Create feature matrix: [Load, Temp?, sin/cos day, sin/cos dow]."""
|
||||
feats = [df["Load"].values.reshape(-1, 1)]
|
||||
|
||||
if self.feature_config.get("use_temp", True):
|
||||
feats.append(df["Temp"].values.reshape(-1, 1))
|
||||
|
||||
if self.feature_config.get("use_time_cyc", True):
|
||||
idx = df.index
|
||||
minute_of_day = (idx.hour * 60 + idx.minute).values.astype(float)
|
||||
sod = 2 * np.pi * minute_of_day / (24 * 60)
|
||||
dow = 2 * np.pi * idx.dayofweek.values.astype(float) / 7.0
|
||||
feats.append(np.sin(sod).reshape(-1, 1))
|
||||
feats.append(np.cos(sod).reshape(-1, 1))
|
||||
feats.append(np.sin(dow).reshape(-1, 1))
|
||||
feats.append(np.cos(dow).reshape(-1, 1))
|
||||
|
||||
X = np.hstack(feats) # shape: (T, n_features)
|
||||
|
||||
# Flatten windows to 2D for scaler fitting, but model expects 3D; we reshape later
|
||||
return X
|
||||
|
||||
def _make_windows(self, X_2d: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Create sliding windows: returns (X_flat, y) where X_flat stacks the windowed features.
|
||||
For Keras we later reshape X_flat -> (N, input_steps, n_features).
|
||||
"""
|
||||
n = X_2d.shape[0]
|
||||
n_features = X_2d.shape[1]
|
||||
X_list, y_list = [], []
|
||||
for i in range(n - self.input_steps - self.output_steps):
|
||||
xw = X_2d[i : i + self.input_steps, :]
|
||||
yw = X_2d[i + self.input_steps : i + self.input_steps + self.output_steps, 0] # target: Load
|
||||
X_list.append(xw.reshape(-1)) # flatten
|
||||
y_list.append(yw)
|
||||
X_flat = np.stack(X_list)
|
||||
y = np.stack(y_list)
|
||||
return X_flat, y
|
||||
|
||||
# ----------------------- Internals: Modeling ----------------------- #
|
||||
def _build_default_model(self, input_dim: int, output_dim: int, lr: float = 1e-3) -> tf.keras.Model:
|
||||
n_features = input_dim // self.input_steps
|
||||
model = Sequential([
|
||||
LSTM(96, input_shape=(self.input_steps, n_features), return_sequences=False),
|
||||
Dropout(0.1),
|
||||
Dense(output_dim)
|
||||
])
|
||||
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lr), loss="mse")
|
||||
return model
|
||||
|
||||
def _load_or_get_scaler(self) -> StandardScaler:
|
||||
if self._scaler is not None:
|
||||
return self._scaler
|
||||
if not os.path.exists(self.scaler_path):
|
||||
raise NotFittedError("Scaler not found. Train the model first to create scaler.")
|
||||
self._scaler = joblib.load(self.scaler_path)
|
||||
return self._scaler
|
||||
|
||||
@staticmethod
|
||||
def _freq_minutes(spec: str) -> int:
|
||||
# supports formats like "15m", "1h"
|
||||
if spec.endswith("m"):
|
||||
return int(spec[:-1])
|
||||
if spec.endswith("h"):
|
||||
return int(spec[:-1]) * 60
|
||||
raise ValueError(f"Unsupported frequency spec: {spec}")
|
||||
|
||||
|
||||
# ----------------------------- retrain_daily.py -----------------------------
|
||||
# A tiny script you can run once per day (e.g., via cron/systemd) to retrain the model.
|
||||
# It delegates the work to LoadForecaster.retrain_daily().
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Read credentials/config from env vars or fill here
|
||||
URL = os.getenv("INFLUX_URL", "http://localhost:8086")
|
||||
TOKEN = os.getenv("INFLUX_TOKEN", "<YOUR_TOKEN>")
|
||||
ORG = os.getenv("INFLUX_ORG", "<YOUR_ORG>")
|
||||
BUCKET = os.getenv("INFLUX_BUCKET", "allmende_db")
|
||||
|
||||
lf = LoadForecaster(
|
||||
url=URL,
|
||||
token=TOKEN,
|
||||
org=ORG,
|
||||
bucket=BUCKET,
|
||||
agg_every="15m",
|
||||
input_hours=72,
|
||||
output_hours=36,
|
||||
model_path=os.getenv("FORECASTER_MODEL", "model/load_forecaster.h5"),
|
||||
scaler_path=os.getenv("FORECASTER_SCALER", "model/scaler.joblib"),
|
||||
)
|
||||
|
||||
# One call per day is enough; decrease epochs for faster daily updates
|
||||
lf.retrain_daily(train_days=int(os.getenv("TRAIN_DAYS", "120")), epochs=int(os.getenv("EPOCHS", "30")), fine_tune=True)
|
||||
|
||||
# Optionally, produce a fresh forecast right after training
|
||||
try:
|
||||
model = lf.load_model()
|
||||
fc = lf.get_15min_forecast(model)
|
||||
# Save latest forecast to CSV for dashboards/consumers
|
||||
out_path = os.getenv("FORECAST_OUT", "model/latest_forecast_15min.csv")
|
||||
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
||||
fc.to_csv(out_path)
|
||||
print(f"Saved forecast: {out_path}")
|
||||
except Exception as e:
|
||||
print(f"Forecast generation failed: {e}")
|
||||
87
main.py
87
main.py
@@ -26,56 +26,57 @@ db = DataBaseInflux(
|
||||
bucket="allmende_db"
|
||||
)
|
||||
|
||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||
hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
|
||||
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
|
||||
wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112')
|
||||
# hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||
# hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
|
||||
# shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
|
||||
wr_master = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112', unit=1)
|
||||
wr_slave = PvInverter(device_name='solaredge_slave', ip_address='192.168.1.112', unit=3)
|
||||
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
|
||||
|
||||
es.add_components(hp_master, hp_slave, shelly, wr, meter)
|
||||
controller = SgReadyController(es)
|
||||
|
||||
# FORECASTING
|
||||
latitude = 48.041
|
||||
longitude = 7.862
|
||||
TZ = "Europe/Berlin"
|
||||
HORIZON_DAYS = 2
|
||||
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
||||
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
||||
|
||||
p_module = 435
|
||||
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
||||
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
||||
pv_plant = PvWattsPlant(site, cfgs)
|
||||
|
||||
now = datetime.now()
|
||||
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
es.add_components(wr_master, wr_slave)#hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
|
||||
# controller = SgReadyController(es)
|
||||
#
|
||||
# # FORECASTING
|
||||
# latitude = 48.041
|
||||
# longitude = 7.862
|
||||
# TZ = "Europe/Berlin"
|
||||
# HORIZON_DAYS = 2
|
||||
# weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
||||
# site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
||||
#
|
||||
# p_module = 435
|
||||
# upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
||||
# upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
||||
# upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
||||
# upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
||||
# cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
||||
# pv_plant = PvWattsPlant(site, cfgs)
|
||||
#
|
||||
# now = datetime.now()
|
||||
# next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
while True:
|
||||
now = datetime.now()
|
||||
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
|
||||
state = es.get_state_and_store_to_database(db)
|
||||
mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
|
||||
# mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
|
||||
#
|
||||
# if mode == 'mode1':
|
||||
# mode_as_binary = 0
|
||||
# else:
|
||||
# mode_as_binary = 1
|
||||
# db.store_data('sg_ready', {'mode': mode_as_binary})
|
||||
|
||||
if mode == 'mode1':
|
||||
mode_as_binary = 0
|
||||
else:
|
||||
mode_as_binary = 1
|
||||
db.store_data('sg_ready', {'mode': mode_as_binary})
|
||||
|
||||
if now >= next_forecast_at:
|
||||
# Start der Prognose: ab der kommenden vollen Stunde
|
||||
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
||||
total = pv_plant.get_power(weather)
|
||||
db.store_forecasts('pv_forecast', total)
|
||||
|
||||
# Nächste geplante Ausführung definieren (immer volle Stunde)
|
||||
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
||||
while next_forecast_at <= now:
|
||||
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
# if now >= next_forecast_at:
|
||||
# # Start der Prognose: ab der kommenden vollen Stunde
|
||||
# start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
# weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
||||
# total = pv_plant.get_power(weather)
|
||||
# db.store_forecasts('pv_forecast', total)
|
||||
#
|
||||
# # Nächste geplante Ausführung definieren (immer volle Stunde)
|
||||
# # Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
||||
# while next_forecast_at <= now:
|
||||
# next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
|
||||
time.sleep(0.1)
|
||||
|
||||
238
pv_inverter.py
238
pv_inverter.py
@@ -1,139 +1,155 @@
|
||||
import time
|
||||
import struct
|
||||
import pandas as pd
|
||||
from typing import Dict, Any, List, Tuple, Optional
|
||||
# pv_inverter.py
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import Optional, Dict, Any, List
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
from pymodbus.exceptions import ModbusIOException
|
||||
import struct
|
||||
import time
|
||||
|
||||
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
|
||||
|
||||
# Obergrenze: bis EXKLUSIVE 40206 (d.h. max. 40205)
|
||||
MAX_ADDR_EXCLUSIVE = 40121
|
||||
|
||||
class PvInverter:
|
||||
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
|
||||
self.device_name = device_name
|
||||
self.ip = ip_address
|
||||
self.port = port
|
||||
self.unit = unit
|
||||
self.client: Optional[ModbusTcpClient] = None
|
||||
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
|
||||
self.connect_to_modbus()
|
||||
self.load_registers(EXCEL_PATH)
|
||||
"""
|
||||
Minimaler Reader für einen SolarEdge-Inverter hinter Modbus-TCP→RTU-Gateway.
|
||||
Liest nur die bekannten Register (wie im funktionierenden Skript).
|
||||
Kompatibel mit pymodbus 2.5.x und 3.x – kein retry_on_empty.
|
||||
"""
|
||||
|
||||
# ---------- Verbindung ----------
|
||||
def connect_to_modbus(self):
|
||||
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
|
||||
def __init__(
|
||||
self,
|
||||
device_name: str,
|
||||
ip_address: str,
|
||||
port: int = 502,
|
||||
unit_id: int = 1,
|
||||
timeout: float = 1.5,
|
||||
silent_interval: float = 0.02,
|
||||
):
|
||||
self.device_name = device_name
|
||||
self.host = ip_address
|
||||
self.port = port
|
||||
self.unit = unit_id
|
||||
self.timeout = timeout
|
||||
self.silent_interval = silent_interval
|
||||
self.client: Optional[ModbusTcpClient] = None
|
||||
self._connect()
|
||||
|
||||
# ---------------- Verbindung ----------------
|
||||
def _connect(self):
|
||||
# retries=0: keine internen Mehrfachversuche
|
||||
self.client = ModbusTcpClient(self.host, port=self.port, timeout=self.timeout, retries=0)
|
||||
if not self.client.connect():
|
||||
print("❌ Verbindung zu Wechselrichter fehlgeschlagen.")
|
||||
raise SystemExit(1)
|
||||
print("✅ Verbindung zu Wechselrichter hergestellt.")
|
||||
raise ConnectionError(f"Verbindung zu {self.device_name} ({self.host}:{self.port}) fehlgeschlagen.")
|
||||
print(f"✅ Verbindung hergestellt zu {self.device_name} ({self.host}:{self.port}, unit={self.unit})")
|
||||
|
||||
def close(self):
|
||||
if self.client:
|
||||
self.client.close()
|
||||
self.client = None
|
||||
|
||||
# ---------- Register-Liste ----------
|
||||
def load_registers(self, excel_path: str):
|
||||
xls = pd.ExcelFile(excel_path)
|
||||
df = xls.parse()
|
||||
# Passe Spaltennamen hier an, falls nötig:
|
||||
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
|
||||
df = df[cols].dropna()
|
||||
df["MB Adresse"] = df["MB Adresse"].astype(int)
|
||||
|
||||
# 1) Vorab-Filter: nur Adressen < 40206 übernehmen
|
||||
df = df[df["MB Adresse"] < MAX_ADDR_EXCLUSIVE]
|
||||
|
||||
self.registers = {
|
||||
int(row["MB Adresse"]): {
|
||||
"desc": str(row["Beschreibung"]).strip(),
|
||||
"type": str(row["Variabel Typ"]).strip()
|
||||
}
|
||||
for _, row in df.iterrows()
|
||||
}
|
||||
|
||||
|
||||
# ---------- Low-Level Lesen ----------
|
||||
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
|
||||
fn = getattr(self.client, fn_name)
|
||||
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
|
||||
for kwargs in (dict(address=address, count=count, slave=self.unit),
|
||||
dict(address=address, count=count)):
|
||||
# ---------------- Low-Level Lesen ----------------
|
||||
def _read_regs(self, addr: int, count: int) -> Optional[List[int]]:
|
||||
"""Liest 'count' Holding-Register ab base-0 'addr' für die konfigurierte Unit-ID."""
|
||||
try:
|
||||
res = fn(**kwargs)
|
||||
if res is None or (hasattr(res, "isError") and res.isError()):
|
||||
continue
|
||||
return res.registers
|
||||
except TypeError:
|
||||
continue
|
||||
rr = self.client.read_holding_registers(address=addr, count=count, slave=self.unit)
|
||||
except ModbusIOException:
|
||||
time.sleep(self.silent_interval)
|
||||
return None
|
||||
except Exception:
|
||||
time.sleep(self.silent_interval)
|
||||
return None
|
||||
|
||||
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
|
||||
regs = self._try_read("read_holding_registers", address, count)
|
||||
if regs is None:
|
||||
regs = self._try_read("read_input_registers", address, count)
|
||||
return regs
|
||||
time.sleep(self.silent_interval)
|
||||
if not rr or rr.isError():
|
||||
return None
|
||||
return rr.registers
|
||||
|
||||
# ---------- Decoding ----------
|
||||
@staticmethod
|
||||
def _to_i16(u16: int) -> int:
|
||||
def _to_int16(u16: int) -> int:
|
||||
return struct.unpack(">h", struct.pack(">H", u16))[0]
|
||||
|
||||
@staticmethod
|
||||
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
|
||||
b = struct.pack(">HH", u16_hi, u16_lo) if msw_first else struct.pack(">HH", u16_lo, u16_hi)
|
||||
return struct.unpack(">f", b)[0]
|
||||
def _apply_sf(raw: int, sf: int) -> float:
|
||||
return raw * (10 ** sf)
|
||||
|
||||
# Hilfsfunktion: wie viele 16-Bit-Register braucht dieser Typ?
|
||||
@staticmethod
|
||||
def _word_count_for_type(rtype: str) -> int:
|
||||
rt = (rtype or "").lower()
|
||||
# Passe hier an deine Excel-Typen an:
|
||||
if "uint32" in rt or "real" in rt or "float" in rt or "string(32)" in rt:
|
||||
return 2
|
||||
# Default: 1 Wort (z.B. int16/uint16)
|
||||
return 1
|
||||
def _read_string_from_regs(regs: List[int]) -> Optional[str]:
|
||||
b = b"".join(struct.pack(">H", r) for r in regs)
|
||||
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
|
||||
return s or None
|
||||
|
||||
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
|
||||
"""
|
||||
Liest einen Wert nach Typ ('INT' oder 'REAL' etc.).
|
||||
Es werden ausschließlich Register < 40206 gelesen.
|
||||
"""
|
||||
addr = int(address_excel)
|
||||
words = self._word_count_for_type(rtype)
|
||||
|
||||
# 2) Harte Grenze prüfen: höchstes angefasstes Register muss < 40206 sein
|
||||
if addr + words - 1 >= MAX_ADDR_EXCLUSIVE:
|
||||
# Überspringen, da der Lesevorgang die Grenze >= 40206 berühren würde
|
||||
# ---------------- Hilfsfunktionen ----------------
|
||||
def _read_string(self, addr: int, words: int) -> Optional[str]:
|
||||
regs = self._read_regs(addr, words)
|
||||
if regs is None:
|
||||
return None
|
||||
return self._read_string_from_regs(regs)
|
||||
|
||||
if words == 2:
|
||||
regs = self._read_any(addr, 2)
|
||||
if not regs or len(regs) < 2:
|
||||
def _read_scaled(self, value_addr: int, sf_addr: int) -> Optional[float]:
|
||||
regs = self._read_regs(value_addr, 1)
|
||||
sf = self._read_regs(sf_addr, 1)
|
||||
if regs is None or sf is None:
|
||||
return None
|
||||
# Deine bisherige Logik interpretiert 2 Worte als Float32:
|
||||
return self._to_f32_from_two(regs[0], regs[1])
|
||||
else:
|
||||
regs = self._read_any(addr, 1)
|
||||
if not regs:
|
||||
return None
|
||||
return float(self._to_i16(regs[0]))
|
||||
raw = self._to_int16(regs[0])
|
||||
sff = self._to_int16(sf[0])
|
||||
return self._apply_sf(raw, sff)
|
||||
|
||||
def _read_u32_with_sf(self, value_addr: int, sf_addr: int) -> Optional[float]:
|
||||
regs = self._read_regs(value_addr, 2)
|
||||
sf = self._read_regs(sf_addr, 1)
|
||||
if regs is None or sf is None:
|
||||
return None
|
||||
u32 = (regs[0] << 16) | regs[1]
|
||||
sff = self._to_int16(sf[0])
|
||||
return self._apply_sf(u32, sff)
|
||||
|
||||
# ---------------- Öffentliche API ----------------
|
||||
def get_state(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Liest ALLE Register aus self.registers und gibt dict zurück.
|
||||
Achtet darauf, dass keine Adresse (inkl. Mehrwort) >= 40206 gelesen wird.
|
||||
"""
|
||||
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
|
||||
for address, meta in sorted(self.registers.items()):
|
||||
words = self._word_count_for_type(meta["type"])
|
||||
# 3) Nochmals Schutz auf Ebene der Iteration:
|
||||
if address + words - 1 >= MAX_ADDR_EXCLUSIVE:
|
||||
continue
|
||||
val = self.read_one(address, meta["type"])
|
||||
if val is None:
|
||||
continue
|
||||
key = f"{address} - {meta['desc']}"
|
||||
data[key] = val
|
||||
return data
|
||||
"""Liest exakt die bekannten Register und gibt ein Dict zurück."""
|
||||
state: Dict[str, Any] = {}
|
||||
|
||||
# --- Common Block ---
|
||||
state["C_Manufacturer"] = self._read_string(40004, 16)
|
||||
state["C_Model"] = self._read_string(40020, 16)
|
||||
state["C_Version"] = self._read_string(40044, 8)
|
||||
state["C_SerialNumber"] = self._read_string(40052, 16)
|
||||
|
||||
# --- Inverter Block ---
|
||||
state["I_AC_Power_W"] = self._read_scaled(40083, 40084)
|
||||
state["I_AC_Voltage_V"] = self._read_scaled(40079, 40082)
|
||||
state["I_AC_Frequency_Hz"] = self._read_scaled(40085, 40086)
|
||||
state["I_DC_Power_W"] = self._read_scaled(40100, 40101)
|
||||
state["I_AC_Energy_Wh_total"] = self._read_u32_with_sf(40093, 40095)
|
||||
|
||||
status_regs = self._read_regs(40107, 2)
|
||||
if status_regs:
|
||||
state["I_Status"] = status_regs[0]
|
||||
state["I_Status_Vendor"] = status_regs[1]
|
||||
else:
|
||||
state["I_Status"] = None
|
||||
state["I_Status_Vendor"] = None
|
||||
|
||||
return state
|
||||
|
||||
|
||||
# ---------------- Beispiel ----------------
|
||||
if __name__ == "__main__":
|
||||
MODBUS_IP = "192.168.1.112"
|
||||
MODBUS_PORT = 502
|
||||
|
||||
master = PvInverter("solaredge_master", MODBUS_IP, port=MODBUS_PORT, unit_id=1)
|
||||
slave = PvInverter("solaredge_slave", MODBUS_IP, port=MODBUS_PORT, unit_id=3)
|
||||
|
||||
try:
|
||||
sm = master.get_state()
|
||||
ss = slave.get_state()
|
||||
|
||||
print("\n=== MASTER ===")
|
||||
for k, v in sm.items():
|
||||
print(f"{k:22s}: {v}")
|
||||
|
||||
print("\n=== SLAVE ===")
|
||||
for k, v in ss.items():
|
||||
print(f"{k:22s}: {v}")
|
||||
|
||||
finally:
|
||||
master.close()
|
||||
slave.close()
|
||||
|
||||
Reference in New Issue
Block a user