Compare commits
10 Commits
load_forec
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f1c5c99621 | ||
|
|
2e17412b4a | ||
|
|
afbcd81310 | ||
|
|
fd87257f37 | ||
|
|
876115cf6e | ||
|
|
f0e7c1338b | ||
|
|
8642a057f0 | ||
|
|
ce14d59d51 | ||
|
|
4727364048 | ||
|
|
666eb211a3 |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,7 @@
|
||||
from heat_pump import HeatPump
|
||||
|
||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502, excel_path="../modbus_registers/heat_pump_registers.xlsx")
|
||||
|
||||
state = hp_master.get_state()
|
||||
|
||||
print(state)
|
||||
49
component_test_connectors/heat_pump_connection_sg_ready.py
Normal file
49
component_test_connectors/heat_pump_connection_sg_ready.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
|
||||
def switch_sg_ready_mode(ip, port, mode):
|
||||
"""
|
||||
Register 300: 1=BUS 0= Hardware Kontakte
|
||||
Register 301 & 302:
|
||||
0-0= Kein Offset
|
||||
0-1 Boiler und Heizung Offset
|
||||
1-1 Boiler Offset + E-Einsatz Sollwert Erhöht
|
||||
1-0 SG EVU Sperre
|
||||
:param ip:
|
||||
:param mode:
|
||||
'mode1' = [True, False, False] => SG Ready deactivated
|
||||
'mode2' = [True, False, True] => SG ready activated for heatpump only
|
||||
'mode3' = [True, True, True] => SG ready activated for heatpump and heat rod
|
||||
:return:
|
||||
"""
|
||||
client = ModbusTcpClient(ip, port=port)
|
||||
if not client.connect():
|
||||
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
|
||||
return
|
||||
|
||||
mode_code = None
|
||||
if mode == 'mode1':
|
||||
mode_code = [True, False, False]
|
||||
elif mode == 'mode2':
|
||||
mode_code = [True, False, True]
|
||||
elif mode == 'mode3':
|
||||
mode_code = [True, True, True]
|
||||
else:
|
||||
print('Uncorrect or no string for mode!')
|
||||
|
||||
try:
|
||||
response_300 = client.write_coil(300, mode_code[0])
|
||||
response_301 = client.write_coil(301, mode_code[1])
|
||||
response_302 = client.write_coil(302, mode_code[2])
|
||||
|
||||
# Optional: Rückmeldungen prüfen
|
||||
for addr, resp in zip([300, 301, 302], [response_300, response_301, response_302]):
|
||||
if resp.isError():
|
||||
print(f"Fehler beim Schreiben von Coil {addr}: {resp}")
|
||||
else:
|
||||
print(f"Coil {addr} erfolgreich geschrieben.")
|
||||
|
||||
finally:
|
||||
client.close()
|
||||
|
||||
if '__name__' == '__main__':
|
||||
switch_sg_ready_mode(ip='10.0.0.10', port=502, mode='mode2')
|
||||
213
data_base_operations/transform_old_db_to_new.py
Normal file
213
data_base_operations/transform_old_db_to_new.py
Normal file
@@ -0,0 +1,213 @@
|
||||
import os, re, math, time
|
||||
from datetime import datetime, timezone, timedelta
|
||||
|
||||
import pandas as pd
|
||||
from influxdb_client import InfluxDBClient, Point, WritePrecision
|
||||
from influxdb_client.client.write_api import SYNCHRONOUS
|
||||
from influxdb_client.rest import ApiException
|
||||
|
||||
|
||||
# -----------------------
|
||||
# CONFIG
|
||||
# -----------------------
|
||||
INFLUX_URL = "http://192.168.1.146:8086"
|
||||
INFLUX_ORG = "allmende"
|
||||
INFLUX_TOKEN = os.environ.get("INFLUX_TOKEN", "Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==")
|
||||
|
||||
SOURCE_BUCKET = "allmende_db"
|
||||
TARGET_BUCKET = "allmende_db_v2"
|
||||
|
||||
MEASUREMENTS = [
|
||||
"hp_master", "hp_slave", "pv_forecast", "sg_ready",
|
||||
"solaredge_master", "solaredge_meter", "solaredge_slave", "wohnung_2_6"
|
||||
]
|
||||
|
||||
START_DT = datetime(2025, 6, 1, tzinfo=timezone.utc)
|
||||
STOP_DT = datetime.now(timezone.utc)
|
||||
WINDOW = timedelta(days=1)
|
||||
|
||||
EXCEL_PATH = "../modbus_registers/heat_pump_registers.xlsx"
|
||||
EXCEL_SHEET = "Register_Map"
|
||||
|
||||
BATCH_SIZE = 1000
|
||||
MAX_RETRIES = 8
|
||||
|
||||
|
||||
# -----------------------
|
||||
# Helpers
|
||||
# -----------------------
|
||||
def normalize(s) -> str:
|
||||
s = "" if s is None else str(s).strip()
|
||||
return re.sub(r"\s+", " ", s)
|
||||
|
||||
def is_invalid_sentinel(v: float) -> bool:
|
||||
return v in (-999.9, -999.0, 30000.0, 32767.0, 65535.0)
|
||||
|
||||
def ensure_bucket(client: InfluxDBClient, name: str):
|
||||
bapi = client.buckets_api()
|
||||
if bapi.find_bucket_by_name(name):
|
||||
return
|
||||
bapi.create_bucket(bucket_name=name, org=INFLUX_ORG, retention_rules=None)
|
||||
|
||||
def build_field_type_map_from_excel(path: str) -> dict[str, str]:
|
||||
df = pd.read_excel(path, sheet_name=EXCEL_SHEET)
|
||||
df = df[df["Register_Type"].astype(str).str.upper() == "IR"].copy()
|
||||
df["Address"] = df["Address"].astype(int)
|
||||
df["Description"] = df["Description"].fillna("").astype(str)
|
||||
df["Tag_Name"] = df["Tag_Name"].fillna("").astype(str)
|
||||
df["Data_Type"] = df["Data_Type"].fillna("").astype(str)
|
||||
|
||||
m: dict[str, str] = {}
|
||||
for _, r in df.iterrows():
|
||||
addr = int(r["Address"])
|
||||
desc = normalize(r["Description"])
|
||||
tag = normalize(r["Tag_Name"])
|
||||
dtp = normalize(r["Data_Type"]).upper()
|
||||
if tag:
|
||||
m[tag] = dtp
|
||||
old_key = normalize(f"{addr} - {desc}".strip(" -"))
|
||||
if old_key:
|
||||
m[old_key] = dtp
|
||||
return m
|
||||
|
||||
def coerce_value_to_dtype(v, dtype: str):
|
||||
if v is None:
|
||||
return None
|
||||
dtp = (dtype or "").upper()
|
||||
|
||||
if isinstance(v, (int, float)):
|
||||
fv = float(v)
|
||||
if math.isnan(fv) or math.isinf(fv):
|
||||
return None
|
||||
|
||||
if dtp in ("BOOL", "BOOLEAN"):
|
||||
if isinstance(v, bool): return v
|
||||
if isinstance(v, (int, float)): return bool(int(v))
|
||||
return None
|
||||
|
||||
if dtp.startswith("INT") or dtp.startswith("UINT"):
|
||||
if isinstance(v, bool): return int(v)
|
||||
if isinstance(v, (int, float)): return int(float(v))
|
||||
return None
|
||||
|
||||
if dtp.startswith("FLOAT") or dtp in ("DOUBLE",):
|
||||
if isinstance(v, bool): return float(int(v))
|
||||
if isinstance(v, (int, float)): return float(v)
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
def write_with_retry(write_api, batch):
|
||||
delay = 1.0
|
||||
last_msg = ""
|
||||
for _ in range(MAX_RETRIES):
|
||||
try:
|
||||
write_api.write(bucket=TARGET_BUCKET, org=INFLUX_ORG, record=batch)
|
||||
return
|
||||
except ApiException as e:
|
||||
last_msg = getattr(e, "body", "") or str(e)
|
||||
status = getattr(e, "status", None)
|
||||
if "timeout" in last_msg.lower() or status in (429, 500, 502, 503, 504):
|
||||
time.sleep(delay)
|
||||
delay = min(delay * 2, 30)
|
||||
continue
|
||||
raise
|
||||
raise RuntimeError(f"Write failed after {MAX_RETRIES} retries: {last_msg}")
|
||||
|
||||
def window_already_migrated(query_api, measurement: str, start: datetime, stop: datetime) -> bool:
|
||||
# Prüft: gibt es im Zielbucket im Fenster mindestens 1 Punkt?
|
||||
flux = f'''
|
||||
from(bucket: "{TARGET_BUCKET}")
|
||||
|> range(start: time(v: "{start.isoformat()}"), stop: time(v: "{stop.isoformat()}"))
|
||||
|> filter(fn: (r) => r._measurement == "{measurement}")
|
||||
|> limit(n: 1)
|
||||
'''
|
||||
tables = query_api.query(flux, org=INFLUX_ORG)
|
||||
for t in tables:
|
||||
if t.records:
|
||||
return True
|
||||
return False
|
||||
|
||||
def migrate_window(query_api, write_api, measurement: str,
|
||||
start: datetime, stop: datetime,
|
||||
type_map: dict[str, str],
|
||||
do_type_cast: bool) -> int:
|
||||
flux = f'''
|
||||
from(bucket: "{SOURCE_BUCKET}")
|
||||
|> range(start: time(v: "{start.isoformat()}"), stop: time(v: "{stop.isoformat()}"))
|
||||
|> filter(fn: (r) => r._measurement == "{measurement}")
|
||||
|> keep(columns: ["_time","_measurement","_field","_value"])
|
||||
'''
|
||||
tables = query_api.query(flux, org=INFLUX_ORG)
|
||||
|
||||
batch, written = [], 0
|
||||
for table in tables:
|
||||
for rec in table.records:
|
||||
t = rec.get_time()
|
||||
field = normalize(rec.get_field())
|
||||
value = rec.get_value()
|
||||
if value is None:
|
||||
continue
|
||||
|
||||
if do_type_cast:
|
||||
dtp = type_map.get(field)
|
||||
if dtp:
|
||||
cv = coerce_value_to_dtype(value, dtp)
|
||||
if cv is None:
|
||||
continue
|
||||
if isinstance(cv, (int, float)) and is_invalid_sentinel(float(cv)):
|
||||
continue
|
||||
value = cv
|
||||
# kein Mapping -> unverändert schreiben
|
||||
|
||||
batch.append(Point(measurement).field(field, value).time(t, WritePrecision.NS))
|
||||
|
||||
if len(batch) >= BATCH_SIZE:
|
||||
write_with_retry(write_api, batch)
|
||||
written += len(batch)
|
||||
batch = []
|
||||
|
||||
if batch:
|
||||
write_with_retry(write_api, batch)
|
||||
written += len(batch)
|
||||
|
||||
return written
|
||||
|
||||
|
||||
# -----------------------
|
||||
# Main
|
||||
# -----------------------
|
||||
def main():
|
||||
if not INFLUX_TOKEN:
|
||||
raise RuntimeError("INFLUX_TOKEN fehlt (Env-Var INFLUX_TOKEN setzen).")
|
||||
|
||||
with InfluxDBClient(url=INFLUX_URL, token=INFLUX_TOKEN, org=INFLUX_ORG, timeout=900_000) as client:
|
||||
ensure_bucket(client, TARGET_BUCKET)
|
||||
|
||||
type_map = build_field_type_map_from_excel(EXCEL_PATH)
|
||||
query_api = client.query_api()
|
||||
write_api = client.write_api(write_options=SYNCHRONOUS)
|
||||
|
||||
for meas in MEASUREMENTS:
|
||||
do_cast = meas in ("hp_master", "hp_slave")
|
||||
cur, total = START_DT, 0
|
||||
print(f"\n== {meas} (cast={'ON' if do_cast else 'OFF'}) ==")
|
||||
|
||||
while cur < STOP_DT:
|
||||
nxt = min(cur + WINDOW, STOP_DT)
|
||||
|
||||
if window_already_migrated(query_api, meas, cur, nxt):
|
||||
print(f"{cur.isoformat()} -> {nxt.isoformat()} : SKIP (existiert schon)")
|
||||
cur = nxt
|
||||
continue
|
||||
|
||||
n = migrate_window(query_api, write_api, meas, cur, nxt, type_map, do_cast)
|
||||
total += n
|
||||
print(f"{cur.isoformat()} -> {nxt.isoformat()} : {n} (gesamt {total})")
|
||||
cur = nxt
|
||||
|
||||
print(f"== Fertig {meas}: {total} Punkte ==")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Binary file not shown.
@@ -1,349 +0,0 @@
|
||||
# load_forecaster.py
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
LoadForecaster: builds a 36-hour forecast at 15-min resolution from InfluxDB data.
|
||||
|
||||
- Data source: InfluxDB (Flux query provided by user)
|
||||
- Target: House load = M_AC_real - I_AC_real
|
||||
- Frequency: 15 minutes (changeable via init)
|
||||
- Model: Keras (LSTM by default, pluggable)
|
||||
- Persistence: Saves model (H5) and scaler (joblib)
|
||||
|
||||
Usage (example):
|
||||
|
||||
from load_forecaster import LoadForecaster
|
||||
import tensorflow as tf
|
||||
|
||||
lf = LoadForecaster(
|
||||
url="http://localhost:8086",
|
||||
token="<YOUR_TOKEN>",
|
||||
org="<YOUR_ORG>",
|
||||
bucket="allmende_db",
|
||||
agg_every="15m",
|
||||
input_hours=72,
|
||||
output_hours=36,
|
||||
model_path="model/load_forecaster.h5",
|
||||
scaler_path="model/scaler.joblib",
|
||||
)
|
||||
|
||||
# Train or retrain
|
||||
lf.train_and_save(train_days=90, epochs=60)
|
||||
|
||||
# Load model and forecast
|
||||
model = lf.load_model()
|
||||
forecast_df = lf.get_15min_forecast(model)
|
||||
print(forecast_df.head())
|
||||
|
||||
"""
|
||||
from __future__ import annotations
|
||||
import os
|
||||
import math
|
||||
import json
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from influxdb_client import InfluxDBClient
|
||||
from influxdb_client.client.warnings import MissingPivotFunction
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.exceptions import NotFittedError
|
||||
import joblib
|
||||
|
||||
# TensorFlow / Keras
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.models import Sequential, load_model
|
||||
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
|
||||
warnings.filterwarnings("ignore", category=MissingPivotFunction)
|
||||
|
||||
@dataclass
|
||||
class InfluxParams:
|
||||
url: str
|
||||
token: str
|
||||
org: str
|
||||
bucket: str = "allmende_db"
|
||||
|
||||
class LoadForecaster:
|
||||
def __init__(
|
||||
self,
|
||||
url: str,
|
||||
token: str,
|
||||
org: str,
|
||||
bucket: str = "allmende_db",
|
||||
agg_every: str = "15m",
|
||||
input_hours: int = 72,
|
||||
output_hours: int = 36,
|
||||
model_path: str = "model/load_forecaster.h5",
|
||||
scaler_path: str = "model/scaler.joblib",
|
||||
feature_config: Optional[dict] = None,
|
||||
) -> None:
|
||||
self.influx = InfluxParams(url=url, token=token, org=org, bucket=bucket)
|
||||
self.agg_every = agg_every
|
||||
self.input_steps = int((input_hours * 60) / self._freq_minutes(agg_every))
|
||||
self.output_steps = int((output_hours * 60) / self._freq_minutes(agg_every))
|
||||
self.model_path = model_path
|
||||
self.scaler_path = scaler_path
|
||||
self.feature_config = feature_config or {"use_temp": True, "use_time_cyc": True}
|
||||
self._scaler: Optional[StandardScaler] = None
|
||||
|
||||
# Ensure model dir exists
|
||||
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
||||
|
||||
# ---------------------------- Public API ---------------------------- #
|
||||
def get_15min_forecast(self, model: tf.keras.Model) -> pd.DataFrame:
|
||||
"""Create a 36-hour forecast at 15-min resolution using the latest data.
|
||||
Assumes a StandardScaler has been fitted during training and saved.
|
||||
The method uses the most recent input window from InfluxDB.
|
||||
"""
|
||||
# Pull just enough history for one input window
|
||||
history_hours = math.ceil(self.input_steps * self._freq_minutes(self.agg_every) / 60)
|
||||
df = self._query_and_prepare(range_hours=history_hours)
|
||||
if len(df) < self.input_steps:
|
||||
raise RuntimeError(f"Not enough data: need {self.input_steps} steps, got {len(df)}")
|
||||
|
||||
# Build features for the latest window
|
||||
feats = self._build_features(df)
|
||||
X_window = feats[-self.input_steps :]
|
||||
|
||||
# Load scaler
|
||||
scaler = self._load_or_get_scaler()
|
||||
X_scaled = scaler.transform(X_window)
|
||||
|
||||
# Predict
|
||||
pred_scaled = model.predict(X_scaled[np.newaxis, ...], verbose=0)[0]
|
||||
|
||||
# Inverse transform only the target column (index 0 is Load)
|
||||
# Reconstruct a full array to inverse_transform
|
||||
inv = np.zeros((self.output_steps, X_scaled.shape[1]))
|
||||
inv[:, 0] = pred_scaled
|
||||
inv_full = scaler.inverse_transform(inv)
|
||||
y_pred = inv_full[:, 0]
|
||||
|
||||
# Build forecast index
|
||||
last_ts = df.index[-1]
|
||||
freq = pd.tseries.frequencies.to_offset(self.agg_every)
|
||||
idx = pd.date_range(last_ts + freq, periods=self.output_steps, freq=freq)
|
||||
out = pd.DataFrame({"Forecast_Load": y_pred}, index=idx)
|
||||
out.index.name = "timestamp"
|
||||
return out
|
||||
|
||||
def train_and_save(
|
||||
self,
|
||||
train_days: int = 90,
|
||||
epochs: int = 80,
|
||||
batch_size: int = 128,
|
||||
validation_split: float = 0.2,
|
||||
learning_rate: float = 1e-3,
|
||||
fine_tune: bool = False,
|
||||
) -> tf.keras.Model:
|
||||
"""Train (or fine-tune) a model from recent history and persist model + scaler."""
|
||||
df = self._query_and_prepare(range_hours=24 * train_days)
|
||||
feats = self._build_features(df)
|
||||
|
||||
# Prepare windows
|
||||
X, y = self._make_windows(feats)
|
||||
if len(X) < 10:
|
||||
raise RuntimeError("Not enough windowed samples to train.")
|
||||
|
||||
# Fit scaler on full X
|
||||
scaler = StandardScaler()
|
||||
X_scaled = scaler.fit_transform(X)
|
||||
self._scaler = scaler
|
||||
joblib.dump(scaler, self.scaler_path)
|
||||
|
||||
# Build model (or load existing for fine-tune)
|
||||
if fine_tune and os.path.exists(self.model_path):
|
||||
model = load_model(self.model_path)
|
||||
else:
|
||||
model = self._build_default_model(input_dim=X.shape[1], output_dim=self.output_steps, lr=learning_rate)
|
||||
|
||||
# Train
|
||||
es = EarlyStopping(monitor="val_loss", patience=10, restore_best_weights=True)
|
||||
model.fit(
|
||||
X_scaled.reshape((-1, self.input_steps, X.shape[1] // self.input_steps)),
|
||||
y,
|
||||
epochs=epochs,
|
||||
batch_size=batch_size,
|
||||
validation_split=validation_split,
|
||||
callbacks=[es],
|
||||
verbose=1,
|
||||
)
|
||||
|
||||
model.save(self.model_path)
|
||||
return model
|
||||
|
||||
# A convenience wrapper to be called from an external script once per day
|
||||
def retrain_daily(self, train_days: int = 90, epochs: int = 40, fine_tune: bool = True) -> None:
|
||||
self.train_and_save(train_days=train_days, epochs=epochs, fine_tune=fine_tune)
|
||||
|
||||
def load_model(self) -> tf.keras.Model:
|
||||
if not os.path.exists(self.model_path):
|
||||
raise FileNotFoundError(f"Model not found at {self.model_path}")
|
||||
return load_model(self.model_path)
|
||||
|
||||
# ------------------------- Internals: Data ------------------------- #
|
||||
def _query_and_prepare(self, range_hours: int) -> pd.DataFrame:
|
||||
"""Query InfluxDB for the last `range_hours` and construct the Load series.
|
||||
Expected fields (exactly as in DB):
|
||||
- "40206 - M_AC_Power"
|
||||
- "40210 - M_AC_Power_SF"
|
||||
- "40083 - I_AC_Power"
|
||||
- "40084 - I_AC_Power_SF"
|
||||
- "300 - Aussentemperatur"
|
||||
"""
|
||||
start_str = f"-{range_hours}h"
|
||||
flux = f'''
|
||||
from(bucket: "{self.influx.bucket}")
|
||||
|> range(start: {start_str})
|
||||
|> filter(fn: (r) => r["_measurement"] == "solaredge_meter" or r["_measurement"] == "solaredge_master" or r["_measurement"] == "hp_master")
|
||||
|> filter(fn: (r) => r["_field"] == "40206 - M_AC_Power" or r["_field"] == "40210 - M_AC_Power_SF" or r["_field"] == "40083 - I_AC_Power" or r["_field"] == "40084 - I_AC_Power_SF" or r["_field"] == "300 - Aussentemperatur")
|
||||
|> aggregateWindow(every: {self.agg_every}, fn: mean, createEmpty: false)
|
||||
|> yield(name: "mean")
|
||||
'''
|
||||
with InfluxDBClient(url=self.influx.url, token=self.influx.token, org=self.influx.org) as client:
|
||||
tables = client.query_api().query_data_frame(flux)
|
||||
|
||||
# Concatenate if list of frames is returned
|
||||
if isinstance(tables, list):
|
||||
df = pd.concat(tables, ignore_index=True)
|
||||
else:
|
||||
df = tables
|
||||
|
||||
# Keep relevant columns and pivot
|
||||
df = df[["_time", "_field", "_value"]]
|
||||
df = df.pivot(index="_time", columns="_field", values="_value").reset_index()
|
||||
df = df.rename(
|
||||
columns={
|
||||
"_time": "timestamp",
|
||||
"40206 - M_AC_Power": "M_AC",
|
||||
"40210 - M_AC_Power_SF": "M_SF",
|
||||
"40083 - I_AC_Power": "I_AC",
|
||||
"40084 - I_AC_Power_SF": "I_SF",
|
||||
"300 - Aussentemperatur": "Temp",
|
||||
}
|
||||
)
|
||||
df = df.sort_values("timestamp").set_index("timestamp")
|
||||
|
||||
# Forward-fill reasonable gaps (e.g., scaler factors and temp)
|
||||
df[["M_SF", "I_SF", "Temp"]] = df[["M_SF", "I_SF", "Temp"]].ffill()
|
||||
|
||||
# Apply scaling: real = value * 10^sf
|
||||
df["I_AC_real"] = df["I_AC"] * np.power(10.0, df["I_SF"]).astype(float)
|
||||
df["M_AC_real"] = df["M_AC"] * np.power(10.0, df["M_SF"]).astype(float)
|
||||
|
||||
# Compute load
|
||||
df["Load"] = df["M_AC_real"] - df["I_AC_real"]
|
||||
|
||||
# Ensure regular 15-min grid
|
||||
df = df.asfreq(self.agg_every)
|
||||
df[["Load", "Temp"]] = df[["Load", "Temp"]].interpolate(limit_direction="both")
|
||||
|
||||
return df[["Load", "Temp"]]
|
||||
|
||||
def _build_features(self, df: pd.DataFrame) -> np.ndarray:
|
||||
"""Create feature matrix: [Load, Temp?, sin/cos day, sin/cos dow]."""
|
||||
feats = [df["Load"].values.reshape(-1, 1)]
|
||||
|
||||
if self.feature_config.get("use_temp", True):
|
||||
feats.append(df["Temp"].values.reshape(-1, 1))
|
||||
|
||||
if self.feature_config.get("use_time_cyc", True):
|
||||
idx = df.index
|
||||
minute_of_day = (idx.hour * 60 + idx.minute).values.astype(float)
|
||||
sod = 2 * np.pi * minute_of_day / (24 * 60)
|
||||
dow = 2 * np.pi * idx.dayofweek.values.astype(float) / 7.0
|
||||
feats.append(np.sin(sod).reshape(-1, 1))
|
||||
feats.append(np.cos(sod).reshape(-1, 1))
|
||||
feats.append(np.sin(dow).reshape(-1, 1))
|
||||
feats.append(np.cos(dow).reshape(-1, 1))
|
||||
|
||||
X = np.hstack(feats) # shape: (T, n_features)
|
||||
|
||||
# Flatten windows to 2D for scaler fitting, but model expects 3D; we reshape later
|
||||
return X
|
||||
|
||||
def _make_windows(self, X_2d: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Create sliding windows: returns (X_flat, y) where X_flat stacks the windowed features.
|
||||
For Keras we later reshape X_flat -> (N, input_steps, n_features).
|
||||
"""
|
||||
n = X_2d.shape[0]
|
||||
n_features = X_2d.shape[1]
|
||||
X_list, y_list = [], []
|
||||
for i in range(n - self.input_steps - self.output_steps):
|
||||
xw = X_2d[i : i + self.input_steps, :]
|
||||
yw = X_2d[i + self.input_steps : i + self.input_steps + self.output_steps, 0] # target: Load
|
||||
X_list.append(xw.reshape(-1)) # flatten
|
||||
y_list.append(yw)
|
||||
X_flat = np.stack(X_list)
|
||||
y = np.stack(y_list)
|
||||
return X_flat, y
|
||||
|
||||
# ----------------------- Internals: Modeling ----------------------- #
|
||||
def _build_default_model(self, input_dim: int, output_dim: int, lr: float = 1e-3) -> tf.keras.Model:
|
||||
n_features = input_dim // self.input_steps
|
||||
model = Sequential([
|
||||
LSTM(96, input_shape=(self.input_steps, n_features), return_sequences=False),
|
||||
Dropout(0.1),
|
||||
Dense(output_dim)
|
||||
])
|
||||
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lr), loss="mse")
|
||||
return model
|
||||
|
||||
def _load_or_get_scaler(self) -> StandardScaler:
|
||||
if self._scaler is not None:
|
||||
return self._scaler
|
||||
if not os.path.exists(self.scaler_path):
|
||||
raise NotFittedError("Scaler not found. Train the model first to create scaler.")
|
||||
self._scaler = joblib.load(self.scaler_path)
|
||||
return self._scaler
|
||||
|
||||
@staticmethod
|
||||
def _freq_minutes(spec: str) -> int:
|
||||
# supports formats like "15m", "1h"
|
||||
if spec.endswith("m"):
|
||||
return int(spec[:-1])
|
||||
if spec.endswith("h"):
|
||||
return int(spec[:-1]) * 60
|
||||
raise ValueError(f"Unsupported frequency spec: {spec}")
|
||||
|
||||
|
||||
# ----------------------------- retrain_daily.py -----------------------------
|
||||
# A tiny script you can run once per day (e.g., via cron/systemd) to retrain the model.
|
||||
# It delegates the work to LoadForecaster.retrain_daily().
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Read credentials/config from env vars or fill here
|
||||
URL = os.getenv("INFLUX_URL", "http://localhost:8086")
|
||||
TOKEN = os.getenv("INFLUX_TOKEN", "<YOUR_TOKEN>")
|
||||
ORG = os.getenv("INFLUX_ORG", "<YOUR_ORG>")
|
||||
BUCKET = os.getenv("INFLUX_BUCKET", "allmende_db")
|
||||
|
||||
lf = LoadForecaster(
|
||||
url=URL,
|
||||
token=TOKEN,
|
||||
org=ORG,
|
||||
bucket=BUCKET,
|
||||
agg_every="15m",
|
||||
input_hours=72,
|
||||
output_hours=36,
|
||||
model_path=os.getenv("FORECASTER_MODEL", "model/load_forecaster.h5"),
|
||||
scaler_path=os.getenv("FORECASTER_SCALER", "model/scaler.joblib"),
|
||||
)
|
||||
|
||||
# One call per day is enough; decrease epochs for faster daily updates
|
||||
lf.retrain_daily(train_days=int(os.getenv("TRAIN_DAYS", "120")), epochs=int(os.getenv("EPOCHS", "30")), fine_tune=True)
|
||||
|
||||
# Optionally, produce a fresh forecast right after training
|
||||
try:
|
||||
model = lf.load_model()
|
||||
fc = lf.get_15min_forecast(model)
|
||||
# Save latest forecast to CSV for dashboards/consumers
|
||||
out_path = os.getenv("FORECAST_OUT", "model/latest_forecast_15min.csv")
|
||||
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
||||
fc.to_csv(out_path)
|
||||
print(f"Saved forecast: {out_path}")
|
||||
except Exception as e:
|
||||
print(f"Forecast generation failed: {e}")
|
||||
193
heat_pump.py
193
heat_pump.py
@@ -1,64 +1,173 @@
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
import pandas as pd
|
||||
import time
|
||||
import struct
|
||||
import math
|
||||
|
||||
|
||||
class HeatPump:
|
||||
def __init__(self, device_name: str, ip_address: str, port: int=502):
|
||||
def __init__(self, device_name: str, ip_address: str, port: int = 502,
|
||||
excel_path: str = "modbus_registers/heat_pump_registers.xlsx",
|
||||
sheet_name: str = "Register_Map"):
|
||||
self.device_name = device_name
|
||||
self.ip = ip_address
|
||||
self.port = port
|
||||
self.client = None
|
||||
self.connect_to_modbus()
|
||||
self.registers = None
|
||||
self.get_registers()
|
||||
self.client = ModbusTcpClient(self.ip, port=self.port)
|
||||
|
||||
def connect_to_modbus(self):
|
||||
port = self.port
|
||||
self.client = ModbusTcpClient(self.ip, port=port)
|
||||
try:
|
||||
if not self.client.connect():
|
||||
self.excel_path = excel_path
|
||||
self.sheet_name = sheet_name
|
||||
self.registers = self.get_registers()
|
||||
|
||||
# -------------
|
||||
# Connection
|
||||
# -------------
|
||||
def connect(self) -> bool:
|
||||
ok = self.client.connect()
|
||||
if not ok:
|
||||
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
|
||||
exit(1)
|
||||
print("Verbindung zur Wärmepumpe erfolgreich.")
|
||||
except KeyboardInterrupt:
|
||||
print("Beendet durch Benutzer (Ctrl+C).")
|
||||
finally:
|
||||
return ok
|
||||
|
||||
def close(self):
|
||||
try:
|
||||
self.client.close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def get_registers(self):
|
||||
# Excel-Datei mit den Input-Registerinformationen
|
||||
excel_path = "modbus_registers/heat_pump_registers.xlsx"
|
||||
xls = pd.ExcelFile(excel_path)
|
||||
df_input_registers = xls.parse('04 Input Register')
|
||||
# -------------
|
||||
# Excel parsing
|
||||
# -------------
|
||||
def get_registers(self) -> dict:
|
||||
df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
|
||||
df = df[df["Register_Type"].astype(str).str.upper() == "IR"].copy()
|
||||
|
||||
# Relevante Spalten bereinigen
|
||||
df_clean = df_input_registers[['MB Adresse', 'Variable', 'Beschreibung', 'Variabel Typ']].dropna()
|
||||
df_clean['MB Adresse'] = df_clean['MB Adresse'].astype(int)
|
||||
df["Address"] = df["Address"].astype(int)
|
||||
df["Length"] = df["Length"].astype(int)
|
||||
df["Data_Type"] = df["Data_Type"].astype(str).str.upper()
|
||||
df["Byteorder"] = df["Byteorder"].astype(str).str.upper()
|
||||
|
||||
# Dictionary aus Excel erzeugen
|
||||
self.registers = {
|
||||
row['MB Adresse']: {
|
||||
'desc': row['Beschreibung'],
|
||||
'type': 'REAL' if row['Variabel Typ'] == 'REAL' else 'INT'
|
||||
}
|
||||
for _, row in df_clean.iterrows()
|
||||
df["Scaling"] = df.get("Scaling", 1.0)
|
||||
df["Scaling"] = df["Scaling"].fillna(1.0).astype(float)
|
||||
|
||||
df["Offset"] = df.get("Offset", 0.0)
|
||||
df["Offset"] = df["Offset"].fillna(0.0).astype(float)
|
||||
|
||||
regs = {}
|
||||
for _, row in df.iterrows():
|
||||
regs[int(row["Address"])] = {
|
||||
"length": int(row["Length"]),
|
||||
"data_type": row["Data_Type"],
|
||||
"byteorder": row["Byteorder"],
|
||||
"scaling": float(row["Scaling"]),
|
||||
"offset": float(row["Offset"]),
|
||||
"tag": str(row.get("Tag_Name", "")).strip(),
|
||||
"desc": "" if pd.isna(row.get("Description")) else str(row.get("Description")).strip(),
|
||||
}
|
||||
return regs
|
||||
|
||||
def get_state(self):
|
||||
data = {}
|
||||
data['Zeit'] = time.strftime('%Y-%m-%d %H:%M:%S')
|
||||
for address, info in self.registers.items():
|
||||
reg_type = info['type']
|
||||
result = self.client.read_input_registers(address, count=2 if reg_type == 'REAL' else 1)
|
||||
# -------------
|
||||
# Byteorder handling
|
||||
# -------------
|
||||
@staticmethod
|
||||
def _registers_to_bytes(registers: list[int], byteorder_code: str) -> bytes:
|
||||
"""
|
||||
registers: Liste von uint16 (0..65535), wie pymodbus sie liefert.
|
||||
byteorder_code: AB, ABCD, CDAB, BADC, DCBA (gemäß Template)
|
||||
Rückgabe: bytes in der Reihenfolge, wie sie für struct.unpack benötigt werden.
|
||||
"""
|
||||
code = (byteorder_code or "ABCD").upper()
|
||||
|
||||
# Pro Register: 16-bit => zwei Bytes (MSB, LSB)
|
||||
words = [struct.pack(">H", r & 0xFFFF) for r in registers] # big endian pro Wort
|
||||
|
||||
if len(words) == 1:
|
||||
w = words[0] # b'\xAA\xBB'
|
||||
if code in ("AB", "ABCD", "CDAB"):
|
||||
return w
|
||||
if code == "BADC": # byte swap
|
||||
return w[::-1]
|
||||
if code == "DCBA": # byte swap (bei 16-bit identisch zu BADC)
|
||||
return w[::-1]
|
||||
return w
|
||||
|
||||
# 32-bit (2 words) oder 64-bit (4 words): Word/Byte swaps abbilden
|
||||
# words[0] = high word bytes, words[1] = low word bytes (in Modbus-Reihenfolge gelesen)
|
||||
if code == "ABCD":
|
||||
ordered = words
|
||||
elif code == "CDAB":
|
||||
# word swap
|
||||
ordered = words[1:] + words[:1]
|
||||
elif code == "BADC":
|
||||
# byte swap innerhalb jedes Words
|
||||
ordered = [w[::-1] for w in words]
|
||||
elif code == "DCBA":
|
||||
# word + byte swap
|
||||
ordered = [w[::-1] for w in (words[1:] + words[:1])]
|
||||
else:
|
||||
ordered = words
|
||||
|
||||
return b"".join(ordered)
|
||||
|
||||
@staticmethod
|
||||
def _decode_by_type(raw_bytes: bytes, data_type: str):
|
||||
dt = (data_type or "").upper()
|
||||
|
||||
# struct: > = big endian, < = little endian
|
||||
# Wir liefern raw_bytes bereits in der richtigen Reihenfolge; daher nutzen wir ">" konsistent.
|
||||
if dt == "UINT16":
|
||||
return struct.unpack(">H", raw_bytes[:2])[0]
|
||||
if dt == "INT16":
|
||||
return struct.unpack(">h", raw_bytes[:2])[0]
|
||||
if dt == "UINT32":
|
||||
return struct.unpack(">I", raw_bytes[:4])[0]
|
||||
if dt == "INT32":
|
||||
return struct.unpack(">i", raw_bytes[:4])[0]
|
||||
if dt == "FLOAT32":
|
||||
return struct.unpack(">f", raw_bytes[:4])[0]
|
||||
if dt == "FLOAT64":
|
||||
return struct.unpack(">d", raw_bytes[:8])[0]
|
||||
|
||||
raise ValueError(f"Unbekannter Data_Type: {dt}")
|
||||
|
||||
def _decode_value(self, registers: list[int], meta: dict):
|
||||
raw = self._registers_to_bytes(registers, meta["byteorder"])
|
||||
val = self._decode_by_type(raw, meta["data_type"])
|
||||
return (val * meta["scaling"]) + meta["offset"]
|
||||
|
||||
# -------------
|
||||
# Reading
|
||||
# -------------
|
||||
def get_state(self) -> dict:
|
||||
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
|
||||
|
||||
if not self.connect():
|
||||
data["error"] = "connect_failed"
|
||||
return data
|
||||
|
||||
try:
|
||||
for address, meta in self.registers.items():
|
||||
count = int(meta["length"])
|
||||
result = self.client.read_input_registers(address, count=count)
|
||||
if result.isError():
|
||||
print(f"Fehler beim Lesen von Adresse {address}: {result}")
|
||||
continue
|
||||
|
||||
if reg_type == 'REAL':
|
||||
value = result.registers[0] / 10.0
|
||||
else:
|
||||
value = result.registers[0]
|
||||
try:
|
||||
value = self._decode_value(result.registers, meta)
|
||||
except Exception as e:
|
||||
print(f"Decode-Fehler an Adresse {address} ({meta.get('tag','')}): {e}")
|
||||
continue
|
||||
|
||||
# Optional filter
|
||||
# if self._is_invalid_sentinel(value):
|
||||
# continue
|
||||
value = float(value)
|
||||
desc = meta.get("desc") or ""
|
||||
field_name = f"{address} - {desc}".strip(" -")
|
||||
data[field_name] = float(value)
|
||||
|
||||
print(f"Adresse {address} - {desc}: {value}")
|
||||
|
||||
finally:
|
||||
self.close()
|
||||
|
||||
print(f"Adresse {address} - {info['desc']}: {value}")
|
||||
data[f"{address} - {info['desc']}"] = value
|
||||
return data
|
||||
|
||||
39
main.py
39
main.py
@@ -1,19 +1,12 @@
|
||||
import time
|
||||
from datetime import datetime
|
||||
from data_base_influx import DataBaseInflux
|
||||
from forecaster.weather_forecaster import WeatherForecaster
|
||||
from heat_pump import HeatPump
|
||||
from pv_inverter import PvInverter
|
||||
from simulators.pv_plant_simulator import PvWattsSubarrayConfig, PvWattsPlant
|
||||
from solaredge_meter import SolaredgeMeter
|
||||
from shelly_pro_3m import ShellyPro3m
|
||||
from energysystem import EnergySystem
|
||||
from sg_ready_controller import SgReadyController
|
||||
from pvlib.location import Location
|
||||
import datetime as dt
|
||||
|
||||
# For dev-System run in terminal: ssh -N -L 127.0.0.1:8111:10.0.0.10:502 pi@192.168.1.146
|
||||
# For productive-System change IP-adress in heatpump to '10.0.0.10' and port to 502
|
||||
|
||||
interval_seconds = 10
|
||||
|
||||
@@ -23,7 +16,7 @@ db = DataBaseInflux(
|
||||
url="http://192.168.1.146:8086",
|
||||
token="Cw_naEZyvJ3isiAh1P4Eq3TsjcHmzzDFS7SlbKDsS6ZWL04fMEYixWqtNxGThDdG27S9aW5g7FP9eiq5z1rsGA==",
|
||||
org="allmende",
|
||||
bucket="allmende_db"
|
||||
bucket="allmende_db_v3"
|
||||
)
|
||||
|
||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||
@@ -35,24 +28,7 @@ meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112'
|
||||
es.add_components(hp_master, hp_slave, shelly, wr, meter)
|
||||
controller = SgReadyController(es)
|
||||
|
||||
# FORECASTING
|
||||
latitude = 48.041
|
||||
longitude = 7.862
|
||||
TZ = "Europe/Berlin"
|
||||
HORIZON_DAYS = 2
|
||||
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
||||
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
||||
|
||||
p_module = 435
|
||||
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
||||
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
||||
pv_plant = PvWattsPlant(site, cfgs)
|
||||
|
||||
now = datetime.now()
|
||||
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
while True:
|
||||
now = datetime.now()
|
||||
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
|
||||
@@ -65,18 +41,5 @@ while True:
|
||||
mode_as_binary = 1
|
||||
db.store_data('sg_ready', {'mode': mode_as_binary})
|
||||
|
||||
if now >= next_forecast_at:
|
||||
# Start der Prognose: ab der kommenden vollen Stunde
|
||||
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
||||
total = pv_plant.get_power(weather)
|
||||
db.store_forecasts('pv_forecast', total)
|
||||
|
||||
# Nächste geplante Ausführung definieren (immer volle Stunde)
|
||||
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
||||
while next_forecast_at <= now:
|
||||
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
BIN
modbus_registers/_modbus_register_template.xlsx
Normal file
BIN
modbus_registers/_modbus_register_template.xlsx
Normal file
Binary file not shown.
Binary file not shown.
BIN
modbus_registers/raw_register_tables/heat_pump_registers.xlsx
Normal file
BIN
modbus_registers/raw_register_tables/heat_pump_registers.xlsx
Normal file
Binary file not shown.
Binary file not shown.
Reference in New Issue
Block a user