3 Commits

Author SHA1 Message Date
Nils Reiners
7b00d622aa falsche registeradressen für Lüftungsanlage...warten auf antwort von hersteller 2025-12-19 17:29:34 +01:00
Nils Reiners
4727364048 scheint zu laufen 2025-12-09 22:07:57 +01:00
Nils Reiners
666eb211a3 old version of pv_forecaster restored 2025-10-29 22:03:46 +01:00
12 changed files with 172 additions and 171 deletions

87
main.py
View File

@@ -26,57 +26,56 @@ db = DataBaseInflux(
bucket="allmende_db"
)
# hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
# hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
# shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr_master = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112', unit=1)
wr_slave = PvInverter(device_name='solaredge_slave', ip_address='192.168.1.112', unit=3)
hp_master = HeatPump(device_name='hp_master', ip_address='127.0.0.1', port=8111)
hp_slave = HeatPump(device_name='hp_slave', ip_address='127.0.0.1', port=8111)
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112')
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
es.add_components(wr_master, wr_slave)#hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
# controller = SgReadyController(es)
#
# # FORECASTING
# latitude = 48.041
# longitude = 7.862
# TZ = "Europe/Berlin"
# HORIZON_DAYS = 2
# weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
# site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
#
# p_module = 435
# upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
# upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
# upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
# upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
# cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
# pv_plant = PvWattsPlant(site, cfgs)
#
# now = datetime.now()
# next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
es.add_components(hp_master, hp_slave, shelly, wr, meter)
controller = SgReadyController(es)
# FORECASTING
latitude = 48.041
longitude = 7.862
TZ = "Europe/Berlin"
HORIZON_DAYS = 2
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
p_module = 435
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
pv_plant = PvWattsPlant(site, cfgs)
now = datetime.now()
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
while True:
now = datetime.now()
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
state = es.get_state_and_store_to_database(db)
# mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
#
# if mode == 'mode1':
# mode_as_binary = 0
# else:
# mode_as_binary = 1
# db.store_data('sg_ready', {'mode': mode_as_binary})
mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
# if now >= next_forecast_at:
# # Start der Prognose: ab der kommenden vollen Stunde
# start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
# weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
# total = pv_plant.get_power(weather)
# db.store_forecasts('pv_forecast', total)
#
# # Nächste geplante Ausführung definieren (immer volle Stunde)
# # Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
# while next_forecast_at <= now:
# next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
if mode == 'mode1':
mode_as_binary = 0
else:
mode_as_binary = 1
db.store_data('sg_ready', {'mode': mode_as_binary})
if now >= next_forecast_at:
# Start der Prognose: ab der kommenden vollen Stunde
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
total = pv_plant.get_power(weather)
db.store_forecasts('pv_forecast', total)
# Nächste geplante Ausführung definieren (immer volle Stunde)
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
while next_forecast_at <= now:
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
time.sleep(0.1)

Binary file not shown.

Binary file not shown.

View File

@@ -1,155 +1,139 @@
# pv_inverter.py
# -*- coding: utf-8 -*-
from typing import Optional, Dict, Any, List
from pymodbus.client import ModbusTcpClient
from pymodbus.exceptions import ModbusIOException
import struct
import time
import struct
import pandas as pd
from typing import Dict, Any, List, Tuple, Optional
from pymodbus.client import ModbusTcpClient
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
# Obergrenze: bis EXKLUSIVE 40206 (d.h. max. 40205)
MAX_ADDR_EXCLUSIVE = 40121
class PvInverter:
"""
Minimaler Reader für einen SolarEdge-Inverter hinter Modbus-TCP→RTU-Gateway.
Liest nur die bekannten Register (wie im funktionierenden Skript).
Kompatibel mit pymodbus 2.5.x und 3.x kein retry_on_empty.
"""
def __init__(
self,
device_name: str,
ip_address: str,
port: int = 502,
unit_id: int = 1,
timeout: float = 1.5,
silent_interval: float = 0.02,
):
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
self.device_name = device_name
self.host = ip_address
self.ip = ip_address
self.port = port
self.unit = unit_id
self.timeout = timeout
self.silent_interval = silent_interval
self.unit = unit
self.client: Optional[ModbusTcpClient] = None
self._connect()
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
self.connect_to_modbus()
self.load_registers(EXCEL_PATH)
# ---------------- Verbindung ----------------
def _connect(self):
# retries=0: keine internen Mehrfachversuche
self.client = ModbusTcpClient(self.host, port=self.port, timeout=self.timeout, retries=0)
# ---------- Verbindung ----------
def connect_to_modbus(self):
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
if not self.client.connect():
raise ConnectionError(f"Verbindung zu {self.device_name} ({self.host}:{self.port}) fehlgeschlagen.")
print(f"✅ Verbindung hergestellt zu {self.device_name} ({self.host}:{self.port}, unit={self.unit})")
print("Verbindung zu Wechselrichter fehlgeschlagen.")
raise SystemExit(1)
print("✅ Verbindung zu Wechselrichter hergestellt.")
def close(self):
if self.client:
self.client.close()
self.client = None
# ---------------- Low-Level Lesen ----------------
def _read_regs(self, addr: int, count: int) -> Optional[List[int]]:
"""Liest 'count' Holding-Register ab base-0 'addr' für die konfigurierte Unit-ID."""
# ---------- Register-Liste ----------
def load_registers(self, excel_path: str):
xls = pd.ExcelFile(excel_path)
df = xls.parse()
# Passe Spaltennamen hier an, falls nötig:
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
df = df[cols].dropna()
df["MB Adresse"] = df["MB Adresse"].astype(int)
# 1) Vorab-Filter: nur Adressen < 40206 übernehmen
df = df[df["MB Adresse"] < MAX_ADDR_EXCLUSIVE]
self.registers = {
int(row["MB Adresse"]): {
"desc": str(row["Beschreibung"]).strip(),
"type": str(row["Variabel Typ"]).strip()
}
for _, row in df.iterrows()
}
# ---------- Low-Level Lesen ----------
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
fn = getattr(self.client, fn_name)
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
for kwargs in (dict(address=address, count=count, slave=self.unit),
dict(address=address, count=count)):
try:
rr = self.client.read_holding_registers(address=addr, count=count, slave=self.unit)
except ModbusIOException:
time.sleep(self.silent_interval)
return None
except Exception:
time.sleep(self.silent_interval)
res = fn(**kwargs)
if res is None or (hasattr(res, "isError") and res.isError()):
continue
return res.registers
except TypeError:
continue
return None
time.sleep(self.silent_interval)
if not rr or rr.isError():
return None
return rr.registers
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
regs = self._try_read("read_holding_registers", address, count)
if regs is None:
regs = self._try_read("read_input_registers", address, count)
return regs
# ---------- Decoding ----------
@staticmethod
def _to_int16(u16: int) -> int:
def _to_i16(u16: int) -> int:
return struct.unpack(">h", struct.pack(">H", u16))[0]
@staticmethod
def _apply_sf(raw: int, sf: int) -> float:
return raw * (10 ** sf)
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
b = struct.pack(">HH", u16_hi, u16_lo) if msw_first else struct.pack(">HH", u16_lo, u16_hi)
return struct.unpack(">f", b)[0]
# Hilfsfunktion: wie viele 16-Bit-Register braucht dieser Typ?
@staticmethod
def _read_string_from_regs(regs: List[int]) -> Optional[str]:
b = b"".join(struct.pack(">H", r) for r in regs)
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
return s or None
def _word_count_for_type(rtype: str) -> int:
rt = (rtype or "").lower()
# Passe hier an deine Excel-Typen an:
if "uint32" in rt or "real" in rt or "float" in rt or "string(32)" in rt:
return 2
# Default: 1 Wort (z.B. int16/uint16)
return 1
# ---------------- Hilfsfunktionen ----------------
def _read_string(self, addr: int, words: int) -> Optional[str]:
regs = self._read_regs(addr, words)
if regs is None:
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
"""
Liest einen Wert nach Typ ('INT' oder 'REAL' etc.).
Es werden ausschließlich Register < 40206 gelesen.
"""
addr = int(address_excel)
words = self._word_count_for_type(rtype)
# 2) Harte Grenze prüfen: höchstes angefasstes Register muss < 40206 sein
if addr + words - 1 >= MAX_ADDR_EXCLUSIVE:
# Überspringen, da der Lesevorgang die Grenze >= 40206 berühren würde
return None
return self._read_string_from_regs(regs)
def _read_scaled(self, value_addr: int, sf_addr: int) -> Optional[float]:
regs = self._read_regs(value_addr, 1)
sf = self._read_regs(sf_addr, 1)
if regs is None or sf is None:
if words == 2:
regs = self._read_any(addr, 2)
if not regs or len(regs) < 2:
return None
raw = self._to_int16(regs[0])
sff = self._to_int16(sf[0])
return self._apply_sf(raw, sff)
def _read_u32_with_sf(self, value_addr: int, sf_addr: int) -> Optional[float]:
regs = self._read_regs(value_addr, 2)
sf = self._read_regs(sf_addr, 1)
if regs is None or sf is None:
return None
u32 = (regs[0] << 16) | regs[1]
sff = self._to_int16(sf[0])
return self._apply_sf(u32, sff)
# ---------------- Öffentliche API ----------------
def get_state(self) -> Dict[str, Any]:
"""Liest exakt die bekannten Register und gibt ein Dict zurück."""
state: Dict[str, Any] = {}
# --- Common Block ---
state["C_Manufacturer"] = self._read_string(40004, 16)
state["C_Model"] = self._read_string(40020, 16)
state["C_Version"] = self._read_string(40044, 8)
state["C_SerialNumber"] = self._read_string(40052, 16)
# --- Inverter Block ---
state["I_AC_Power_W"] = self._read_scaled(40083, 40084)
state["I_AC_Voltage_V"] = self._read_scaled(40079, 40082)
state["I_AC_Frequency_Hz"] = self._read_scaled(40085, 40086)
state["I_DC_Power_W"] = self._read_scaled(40100, 40101)
state["I_AC_Energy_Wh_total"] = self._read_u32_with_sf(40093, 40095)
status_regs = self._read_regs(40107, 2)
if status_regs:
state["I_Status"] = status_regs[0]
state["I_Status_Vendor"] = status_regs[1]
# Deine bisherige Logik interpretiert 2 Worte als Float32:
return self._to_f32_from_two(regs[0], regs[1])
else:
state["I_Status"] = None
state["I_Status_Vendor"] = None
regs = self._read_any(addr, 1)
if not regs:
return None
return float(self._to_i16(regs[0]))
return state
# ---------------- Beispiel ----------------
if __name__ == "__main__":
MODBUS_IP = "192.168.1.112"
MODBUS_PORT = 502
master = PvInverter("solaredge_master", MODBUS_IP, port=MODBUS_PORT, unit_id=1)
slave = PvInverter("solaredge_slave", MODBUS_IP, port=MODBUS_PORT, unit_id=3)
try:
sm = master.get_state()
ss = slave.get_state()
print("\n=== MASTER ===")
for k, v in sm.items():
print(f"{k:22s}: {v}")
print("\n=== SLAVE ===")
for k, v in ss.items():
print(f"{k:22s}: {v}")
finally:
master.close()
slave.close()
def get_state(self) -> Dict[str, Any]:
"""
Liest ALLE Register aus self.registers und gibt dict zurück.
Achtet darauf, dass keine Adresse (inkl. Mehrwort) >= 40206 gelesen wird.
"""
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
for address, meta in sorted(self.registers.items()):
words = self._word_count_for_type(meta["type"])
# 3) Nochmals Schutz auf Ebene der Iteration:
if address + words - 1 >= MAX_ADDR_EXCLUSIVE:
continue
val = self.read_one(address, meta["type"])
if val is None:
continue
key = f"{address} - {meta['desc']}"
data[key] = val
return data

18
test.py Normal file
View File

@@ -0,0 +1,18 @@
from pymodbus.client import ModbusTcpClient
import struct
MODBUS_IP="10.0.0.40"
client=ModbusTcpClient(MODBUS_IP, port=502)
client.connect()
try:
rr = client.read_input_registers(30, count=3, slave=1)
print("Raw 30..32:", rr.registers)
def as_int16(x):
return struct.unpack(">h", struct.pack(">H", x))[0]
for i, raw in enumerate(rr.registers, start=30):
print(i, "raw", raw, "int16", as_int16(raw), "scaled", as_int16(raw)/10.0)
finally:
client.close()