Compare commits
3 Commits
standard_r
...
pv_forecas
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4af2460736 | ||
|
|
38116390df | ||
|
|
5827b494b5 |
87
main.py
87
main.py
@@ -26,56 +26,57 @@ db = DataBaseInflux(
|
|||||||
bucket="allmende_db"
|
bucket="allmende_db"
|
||||||
)
|
)
|
||||||
|
|
||||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
# hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||||
hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
|
# hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
|
||||||
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
|
# shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
|
||||||
wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112')
|
wr_master = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112', unit=1)
|
||||||
|
wr_slave = PvInverter(device_name='solaredge_slave', ip_address='192.168.1.112', unit=3)
|
||||||
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
|
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
|
||||||
|
|
||||||
es.add_components(hp_master, hp_slave, shelly, wr, meter)
|
es.add_components(wr_master, wr_slave)#hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
|
||||||
controller = SgReadyController(es)
|
# controller = SgReadyController(es)
|
||||||
|
#
|
||||||
# FORECASTING
|
# # FORECASTING
|
||||||
latitude = 48.041
|
# latitude = 48.041
|
||||||
longitude = 7.862
|
# longitude = 7.862
|
||||||
TZ = "Europe/Berlin"
|
# TZ = "Europe/Berlin"
|
||||||
HORIZON_DAYS = 2
|
# HORIZON_DAYS = 2
|
||||||
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
# weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
||||||
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
# site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
||||||
|
#
|
||||||
p_module = 435
|
# p_module = 435
|
||||||
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
# upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
||||||
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
# upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
||||||
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
# upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
||||||
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
# upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
||||||
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
# cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
||||||
pv_plant = PvWattsPlant(site, cfgs)
|
# pv_plant = PvWattsPlant(site, cfgs)
|
||||||
|
#
|
||||||
now = datetime.now()
|
# now = datetime.now()
|
||||||
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
# next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||||
while True:
|
while True:
|
||||||
now = datetime.now()
|
now = datetime.now()
|
||||||
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
|
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
|
||||||
state = es.get_state_and_store_to_database(db)
|
state = es.get_state_and_store_to_database(db)
|
||||||
mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
|
# mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
|
||||||
|
#
|
||||||
|
# if mode == 'mode1':
|
||||||
|
# mode_as_binary = 0
|
||||||
|
# else:
|
||||||
|
# mode_as_binary = 1
|
||||||
|
# db.store_data('sg_ready', {'mode': mode_as_binary})
|
||||||
|
|
||||||
if mode == 'mode1':
|
# if now >= next_forecast_at:
|
||||||
mode_as_binary = 0
|
# # Start der Prognose: ab der kommenden vollen Stunde
|
||||||
else:
|
# start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||||
mode_as_binary = 1
|
# weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
||||||
db.store_data('sg_ready', {'mode': mode_as_binary})
|
# total = pv_plant.get_power(weather)
|
||||||
|
# db.store_forecasts('pv_forecast', total)
|
||||||
if now >= next_forecast_at:
|
#
|
||||||
# Start der Prognose: ab der kommenden vollen Stunde
|
# # Nächste geplante Ausführung definieren (immer volle Stunde)
|
||||||
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
# # Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
||||||
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
# while next_forecast_at <= now:
|
||||||
total = pv_plant.get_power(weather)
|
# next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||||
db.store_forecasts('pv_forecast', total)
|
|
||||||
|
|
||||||
# Nächste geplante Ausführung definieren (immer volle Stunde)
|
|
||||||
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
|
||||||
while next_forecast_at <= now:
|
|
||||||
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
|
||||||
|
|
||||||
|
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
||||||
|
|||||||
244
pv_inverter.py
244
pv_inverter.py
@@ -1,139 +1,155 @@
|
|||||||
import time
|
# pv_inverter.py
|
||||||
import struct
|
# -*- coding: utf-8 -*-
|
||||||
import pandas as pd
|
from typing import Optional, Dict, Any, List
|
||||||
from typing import Dict, Any, List, Tuple, Optional
|
|
||||||
from pymodbus.client import ModbusTcpClient
|
from pymodbus.client import ModbusTcpClient
|
||||||
|
from pymodbus.exceptions import ModbusIOException
|
||||||
|
import struct
|
||||||
|
import time
|
||||||
|
|
||||||
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
|
|
||||||
|
|
||||||
# Obergrenze: bis EXKLUSIVE 40206 (d.h. max. 40205)
|
|
||||||
MAX_ADDR_EXCLUSIVE = 40121
|
|
||||||
|
|
||||||
class PvInverter:
|
class PvInverter:
|
||||||
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
|
"""
|
||||||
self.device_name = device_name
|
Minimaler Reader für einen SolarEdge-Inverter hinter Modbus-TCP→RTU-Gateway.
|
||||||
self.ip = ip_address
|
Liest nur die bekannten Register (wie im funktionierenden Skript).
|
||||||
self.port = port
|
Kompatibel mit pymodbus 2.5.x und 3.x – kein retry_on_empty.
|
||||||
self.unit = unit
|
"""
|
||||||
self.client: Optional[ModbusTcpClient] = None
|
|
||||||
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
|
|
||||||
self.connect_to_modbus()
|
|
||||||
self.load_registers(EXCEL_PATH)
|
|
||||||
|
|
||||||
# ---------- Verbindung ----------
|
def __init__(
|
||||||
def connect_to_modbus(self):
|
self,
|
||||||
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
|
device_name: str,
|
||||||
|
ip_address: str,
|
||||||
|
port: int = 502,
|
||||||
|
unit_id: int = 1,
|
||||||
|
timeout: float = 1.5,
|
||||||
|
silent_interval: float = 0.02,
|
||||||
|
):
|
||||||
|
self.device_name = device_name
|
||||||
|
self.host = ip_address
|
||||||
|
self.port = port
|
||||||
|
self.unit = unit_id
|
||||||
|
self.timeout = timeout
|
||||||
|
self.silent_interval = silent_interval
|
||||||
|
self.client: Optional[ModbusTcpClient] = None
|
||||||
|
self._connect()
|
||||||
|
|
||||||
|
# ---------------- Verbindung ----------------
|
||||||
|
def _connect(self):
|
||||||
|
# retries=0: keine internen Mehrfachversuche
|
||||||
|
self.client = ModbusTcpClient(self.host, port=self.port, timeout=self.timeout, retries=0)
|
||||||
if not self.client.connect():
|
if not self.client.connect():
|
||||||
print("❌ Verbindung zu Wechselrichter fehlgeschlagen.")
|
raise ConnectionError(f"Verbindung zu {self.device_name} ({self.host}:{self.port}) fehlgeschlagen.")
|
||||||
raise SystemExit(1)
|
print(f"✅ Verbindung hergestellt zu {self.device_name} ({self.host}:{self.port}, unit={self.unit})")
|
||||||
print("✅ Verbindung zu Wechselrichter hergestellt.")
|
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
if self.client:
|
if self.client:
|
||||||
self.client.close()
|
self.client.close()
|
||||||
self.client = None
|
self.client = None
|
||||||
|
|
||||||
# ---------- Register-Liste ----------
|
# ---------------- Low-Level Lesen ----------------
|
||||||
def load_registers(self, excel_path: str):
|
def _read_regs(self, addr: int, count: int) -> Optional[List[int]]:
|
||||||
xls = pd.ExcelFile(excel_path)
|
"""Liest 'count' Holding-Register ab base-0 'addr' für die konfigurierte Unit-ID."""
|
||||||
df = xls.parse()
|
try:
|
||||||
# Passe Spaltennamen hier an, falls nötig:
|
rr = self.client.read_holding_registers(address=addr, count=count, slave=self.unit)
|
||||||
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
|
except ModbusIOException:
|
||||||
df = df[cols].dropna()
|
time.sleep(self.silent_interval)
|
||||||
df["MB Adresse"] = df["MB Adresse"].astype(int)
|
return None
|
||||||
|
except Exception:
|
||||||
|
time.sleep(self.silent_interval)
|
||||||
|
return None
|
||||||
|
|
||||||
# 1) Vorab-Filter: nur Adressen < 40206 übernehmen
|
time.sleep(self.silent_interval)
|
||||||
df = df[df["MB Adresse"] < MAX_ADDR_EXCLUSIVE]
|
if not rr or rr.isError():
|
||||||
|
return None
|
||||||
|
return rr.registers
|
||||||
|
|
||||||
self.registers = {
|
|
||||||
int(row["MB Adresse"]): {
|
|
||||||
"desc": str(row["Beschreibung"]).strip(),
|
|
||||||
"type": str(row["Variabel Typ"]).strip()
|
|
||||||
}
|
|
||||||
for _, row in df.iterrows()
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# ---------- Low-Level Lesen ----------
|
|
||||||
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
|
|
||||||
fn = getattr(self.client, fn_name)
|
|
||||||
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
|
|
||||||
for kwargs in (dict(address=address, count=count, slave=self.unit),
|
|
||||||
dict(address=address, count=count)):
|
|
||||||
try:
|
|
||||||
res = fn(**kwargs)
|
|
||||||
if res is None or (hasattr(res, "isError") and res.isError()):
|
|
||||||
continue
|
|
||||||
return res.registers
|
|
||||||
except TypeError:
|
|
||||||
continue
|
|
||||||
return None
|
|
||||||
|
|
||||||
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
|
|
||||||
regs = self._try_read("read_holding_registers", address, count)
|
|
||||||
if regs is None:
|
|
||||||
regs = self._try_read("read_input_registers", address, count)
|
|
||||||
return regs
|
|
||||||
|
|
||||||
# ---------- Decoding ----------
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _to_i16(u16: int) -> int:
|
def _to_int16(u16: int) -> int:
|
||||||
return struct.unpack(">h", struct.pack(">H", u16))[0]
|
return struct.unpack(">h", struct.pack(">H", u16))[0]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
|
def _apply_sf(raw: int, sf: int) -> float:
|
||||||
b = struct.pack(">HH", u16_hi, u16_lo) if msw_first else struct.pack(">HH", u16_lo, u16_hi)
|
return raw * (10 ** sf)
|
||||||
return struct.unpack(">f", b)[0]
|
|
||||||
|
|
||||||
# Hilfsfunktion: wie viele 16-Bit-Register braucht dieser Typ?
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _word_count_for_type(rtype: str) -> int:
|
def _read_string_from_regs(regs: List[int]) -> Optional[str]:
|
||||||
rt = (rtype or "").lower()
|
b = b"".join(struct.pack(">H", r) for r in regs)
|
||||||
# Passe hier an deine Excel-Typen an:
|
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
|
||||||
if "uint32" in rt or "real" in rt or "float" in rt or "string(32)" in rt:
|
return s or None
|
||||||
return 2
|
|
||||||
# Default: 1 Wort (z.B. int16/uint16)
|
|
||||||
return 1
|
|
||||||
|
|
||||||
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
|
# ---------------- Hilfsfunktionen ----------------
|
||||||
"""
|
def _read_string(self, addr: int, words: int) -> Optional[str]:
|
||||||
Liest einen Wert nach Typ ('INT' oder 'REAL' etc.).
|
regs = self._read_regs(addr, words)
|
||||||
Es werden ausschließlich Register < 40206 gelesen.
|
if regs is None:
|
||||||
"""
|
|
||||||
addr = int(address_excel)
|
|
||||||
words = self._word_count_for_type(rtype)
|
|
||||||
|
|
||||||
# 2) Harte Grenze prüfen: höchstes angefasstes Register muss < 40206 sein
|
|
||||||
if addr + words - 1 >= MAX_ADDR_EXCLUSIVE:
|
|
||||||
# Überspringen, da der Lesevorgang die Grenze >= 40206 berühren würde
|
|
||||||
return None
|
return None
|
||||||
|
return self._read_string_from_regs(regs)
|
||||||
|
|
||||||
if words == 2:
|
def _read_scaled(self, value_addr: int, sf_addr: int) -> Optional[float]:
|
||||||
regs = self._read_any(addr, 2)
|
regs = self._read_regs(value_addr, 1)
|
||||||
if not regs or len(regs) < 2:
|
sf = self._read_regs(sf_addr, 1)
|
||||||
return None
|
if regs is None or sf is None:
|
||||||
# Deine bisherige Logik interpretiert 2 Worte als Float32:
|
return None
|
||||||
return self._to_f32_from_two(regs[0], regs[1])
|
raw = self._to_int16(regs[0])
|
||||||
else:
|
sff = self._to_int16(sf[0])
|
||||||
regs = self._read_any(addr, 1)
|
return self._apply_sf(raw, sff)
|
||||||
if not regs:
|
|
||||||
return None
|
|
||||||
return float(self._to_i16(regs[0]))
|
|
||||||
|
|
||||||
|
def _read_u32_with_sf(self, value_addr: int, sf_addr: int) -> Optional[float]:
|
||||||
|
regs = self._read_regs(value_addr, 2)
|
||||||
|
sf = self._read_regs(sf_addr, 1)
|
||||||
|
if regs is None or sf is None:
|
||||||
|
return None
|
||||||
|
u32 = (regs[0] << 16) | regs[1]
|
||||||
|
sff = self._to_int16(sf[0])
|
||||||
|
return self._apply_sf(u32, sff)
|
||||||
|
|
||||||
|
# ---------------- Öffentliche API ----------------
|
||||||
def get_state(self) -> Dict[str, Any]:
|
def get_state(self) -> Dict[str, Any]:
|
||||||
"""
|
"""Liest exakt die bekannten Register und gibt ein Dict zurück."""
|
||||||
Liest ALLE Register aus self.registers und gibt dict zurück.
|
state: Dict[str, Any] = {}
|
||||||
Achtet darauf, dass keine Adresse (inkl. Mehrwort) >= 40206 gelesen wird.
|
|
||||||
"""
|
# --- Common Block ---
|
||||||
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
|
state["C_Manufacturer"] = self._read_string(40004, 16)
|
||||||
for address, meta in sorted(self.registers.items()):
|
state["C_Model"] = self._read_string(40020, 16)
|
||||||
words = self._word_count_for_type(meta["type"])
|
state["C_Version"] = self._read_string(40044, 8)
|
||||||
# 3) Nochmals Schutz auf Ebene der Iteration:
|
state["C_SerialNumber"] = self._read_string(40052, 16)
|
||||||
if address + words - 1 >= MAX_ADDR_EXCLUSIVE:
|
|
||||||
continue
|
# --- Inverter Block ---
|
||||||
val = self.read_one(address, meta["type"])
|
state["I_AC_Power_W"] = self._read_scaled(40083, 40084)
|
||||||
if val is None:
|
state["I_AC_Voltage_V"] = self._read_scaled(40079, 40082)
|
||||||
continue
|
state["I_AC_Frequency_Hz"] = self._read_scaled(40085, 40086)
|
||||||
key = f"{address} - {meta['desc']}"
|
state["I_DC_Power_W"] = self._read_scaled(40100, 40101)
|
||||||
data[key] = val
|
state["I_AC_Energy_Wh_total"] = self._read_u32_with_sf(40093, 40095)
|
||||||
return data
|
|
||||||
|
status_regs = self._read_regs(40107, 2)
|
||||||
|
if status_regs:
|
||||||
|
state["I_Status"] = status_regs[0]
|
||||||
|
state["I_Status_Vendor"] = status_regs[1]
|
||||||
|
else:
|
||||||
|
state["I_Status"] = None
|
||||||
|
state["I_Status_Vendor"] = None
|
||||||
|
|
||||||
|
return state
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------- Beispiel ----------------
|
||||||
|
if __name__ == "__main__":
|
||||||
|
MODBUS_IP = "192.168.1.112"
|
||||||
|
MODBUS_PORT = 502
|
||||||
|
|
||||||
|
master = PvInverter("solaredge_master", MODBUS_IP, port=MODBUS_PORT, unit_id=1)
|
||||||
|
slave = PvInverter("solaredge_slave", MODBUS_IP, port=MODBUS_PORT, unit_id=3)
|
||||||
|
|
||||||
|
try:
|
||||||
|
sm = master.get_state()
|
||||||
|
ss = slave.get_state()
|
||||||
|
|
||||||
|
print("\n=== MASTER ===")
|
||||||
|
for k, v in sm.items():
|
||||||
|
print(f"{k:22s}: {v}")
|
||||||
|
|
||||||
|
print("\n=== SLAVE ===")
|
||||||
|
for k, v in ss.items():
|
||||||
|
print(f"{k:22s}: {v}")
|
||||||
|
|
||||||
|
finally:
|
||||||
|
master.close()
|
||||||
|
slave.close()
|
||||||
|
|||||||
Reference in New Issue
Block a user