Compare commits
3 Commits
standard_r
...
pv_forecas
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4af2460736 | ||
|
|
38116390df | ||
|
|
5827b494b5 |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,7 +0,0 @@
|
||||
from heat_pump import HeatPump
|
||||
|
||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502, excel_path="../modbus_registers/heat_pump_registers.xlsx")
|
||||
|
||||
state = hp_master.get_state()
|
||||
|
||||
print(state)
|
||||
@@ -1,49 +0,0 @@
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
|
||||
def switch_sg_ready_mode(ip, port, mode):
|
||||
"""
|
||||
Register 300: 1=BUS 0= Hardware Kontakte
|
||||
Register 301 & 302:
|
||||
0-0= Kein Offset
|
||||
0-1 Boiler und Heizung Offset
|
||||
1-1 Boiler Offset + E-Einsatz Sollwert Erhöht
|
||||
1-0 SG EVU Sperre
|
||||
:param ip:
|
||||
:param mode:
|
||||
'mode1' = [True, False, False] => SG Ready deactivated
|
||||
'mode2' = [True, False, True] => SG ready activated for heatpump only
|
||||
'mode3' = [True, True, True] => SG ready activated for heatpump and heat rod
|
||||
:return:
|
||||
"""
|
||||
client = ModbusTcpClient(ip, port=port)
|
||||
if not client.connect():
|
||||
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
|
||||
return
|
||||
|
||||
mode_code = None
|
||||
if mode == 'mode1':
|
||||
mode_code = [True, False, False]
|
||||
elif mode == 'mode2':
|
||||
mode_code = [True, False, True]
|
||||
elif mode == 'mode3':
|
||||
mode_code = [True, True, True]
|
||||
else:
|
||||
print('Uncorrect or no string for mode!')
|
||||
|
||||
try:
|
||||
response_300 = client.write_coil(300, mode_code[0])
|
||||
response_301 = client.write_coil(301, mode_code[1])
|
||||
response_302 = client.write_coil(302, mode_code[2])
|
||||
|
||||
# Optional: Rückmeldungen prüfen
|
||||
for addr, resp in zip([300, 301, 302], [response_300, response_301, response_302]):
|
||||
if resp.isError():
|
||||
print(f"Fehler beim Schreiben von Coil {addr}: {resp}")
|
||||
else:
|
||||
print(f"Coil {addr} erfolgreich geschrieben.")
|
||||
|
||||
finally:
|
||||
client.close()
|
||||
|
||||
if '__name__' == '__main__':
|
||||
switch_sg_ready_mode(ip='10.0.0.10', port=502, mode='mode2')
|
||||
Binary file not shown.
197
heat_pump.py
197
heat_pump.py
@@ -1,177 +1,64 @@
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
import pandas as pd
|
||||
import time
|
||||
import struct
|
||||
import math
|
||||
|
||||
|
||||
class HeatPump:
|
||||
def __init__(self, device_name: str, ip_address: str, port: int = 502,
|
||||
excel_path: str = "modbus_registers/heat_pump_registers_modbus.xlsx",
|
||||
sheet_name: str = "Register_Map"):
|
||||
def __init__(self, device_name: str, ip_address: str, port: int=502):
|
||||
self.device_name = device_name
|
||||
self.ip = ip_address
|
||||
self.port = port
|
||||
self.client = ModbusTcpClient(self.ip, port=self.port)
|
||||
self.client = None
|
||||
self.connect_to_modbus()
|
||||
self.registers = None
|
||||
self.get_registers()
|
||||
|
||||
self.excel_path = excel_path
|
||||
self.sheet_name = sheet_name
|
||||
self.registers = self.get_registers()
|
||||
|
||||
# -------------
|
||||
# Connection
|
||||
# -------------
|
||||
def connect(self) -> bool:
|
||||
ok = self.client.connect()
|
||||
if not ok:
|
||||
def connect_to_modbus(self):
|
||||
port = self.port
|
||||
self.client = ModbusTcpClient(self.ip, port=port)
|
||||
try:
|
||||
if not self.client.connect():
|
||||
print("Verbindung zur Wärmepumpe fehlgeschlagen.")
|
||||
return ok
|
||||
|
||||
def close(self):
|
||||
try:
|
||||
exit(1)
|
||||
print("Verbindung zur Wärmepumpe erfolgreich.")
|
||||
except KeyboardInterrupt:
|
||||
print("Beendet durch Benutzer (Ctrl+C).")
|
||||
finally:
|
||||
self.client.close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# -------------
|
||||
# Excel parsing
|
||||
# -------------
|
||||
def get_registers(self) -> dict:
|
||||
df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
|
||||
df = df[df["Register_Type"].astype(str).str.upper() == "IR"].copy()
|
||||
def get_registers(self):
|
||||
# Excel-Datei mit den Input-Registerinformationen
|
||||
excel_path = "modbus_registers/heat_pump_registers.xlsx"
|
||||
xls = pd.ExcelFile(excel_path)
|
||||
df_input_registers = xls.parse('04 Input Register')
|
||||
|
||||
df["Address"] = df["Address"].astype(int)
|
||||
df["Length"] = df["Length"].astype(int)
|
||||
df["Data_Type"] = df["Data_Type"].astype(str).str.upper()
|
||||
df["Byteorder"] = df["Byteorder"].astype(str).str.upper()
|
||||
# Relevante Spalten bereinigen
|
||||
df_clean = df_input_registers[['MB Adresse', 'Variable', 'Beschreibung', 'Variabel Typ']].dropna()
|
||||
df_clean['MB Adresse'] = df_clean['MB Adresse'].astype(int)
|
||||
|
||||
df["Scaling"] = df.get("Scaling", 1.0)
|
||||
df["Scaling"] = df["Scaling"].fillna(1.0).astype(float)
|
||||
|
||||
df["Offset"] = df.get("Offset", 0.0)
|
||||
df["Offset"] = df["Offset"].fillna(0.0).astype(float)
|
||||
|
||||
regs = {}
|
||||
for _, row in df.iterrows():
|
||||
regs[int(row["Address"])] = {
|
||||
"length": int(row["Length"]),
|
||||
"data_type": row["Data_Type"],
|
||||
"byteorder": row["Byteorder"],
|
||||
"scaling": float(row["Scaling"]),
|
||||
"offset": float(row["Offset"]),
|
||||
"tag": str(row.get("Tag_Name", "")).strip(),
|
||||
"desc": "" if pd.isna(row.get("Description")) else str(row.get("Description")).strip(),
|
||||
# Dictionary aus Excel erzeugen
|
||||
self.registers = {
|
||||
row['MB Adresse']: {
|
||||
'desc': row['Beschreibung'],
|
||||
'type': 'REAL' if row['Variabel Typ'] == 'REAL' else 'INT'
|
||||
}
|
||||
for _, row in df_clean.iterrows()
|
||||
}
|
||||
return regs
|
||||
|
||||
# -------------
|
||||
# Byteorder handling
|
||||
# -------------
|
||||
@staticmethod
|
||||
def _registers_to_bytes(registers: list[int], byteorder_code: str) -> bytes:
|
||||
"""
|
||||
registers: Liste von uint16 (0..65535), wie pymodbus sie liefert.
|
||||
byteorder_code: AB, ABCD, CDAB, BADC, DCBA (gemäß Template)
|
||||
Rückgabe: bytes in der Reihenfolge, wie sie für struct.unpack benötigt werden.
|
||||
"""
|
||||
code = (byteorder_code or "ABCD").upper()
|
||||
|
||||
# Pro Register: 16-bit => zwei Bytes (MSB, LSB)
|
||||
words = [struct.pack(">H", r & 0xFFFF) for r in registers] # big endian pro Wort
|
||||
|
||||
if len(words) == 1:
|
||||
w = words[0] # b'\xAA\xBB'
|
||||
if code in ("AB", "ABCD", "CDAB"):
|
||||
return w
|
||||
if code == "BADC": # byte swap
|
||||
return w[::-1]
|
||||
if code == "DCBA": # byte swap (bei 16-bit identisch zu BADC)
|
||||
return w[::-1]
|
||||
return w
|
||||
|
||||
# 32-bit (2 words) oder 64-bit (4 words): Word/Byte swaps abbilden
|
||||
# words[0] = high word bytes, words[1] = low word bytes (in Modbus-Reihenfolge gelesen)
|
||||
if code == "ABCD":
|
||||
ordered = words
|
||||
elif code == "CDAB":
|
||||
# word swap
|
||||
ordered = words[1:] + words[:1]
|
||||
elif code == "BADC":
|
||||
# byte swap innerhalb jedes Words
|
||||
ordered = [w[::-1] for w in words]
|
||||
elif code == "DCBA":
|
||||
# word + byte swap
|
||||
ordered = [w[::-1] for w in (words[1:] + words[:1])]
|
||||
else:
|
||||
ordered = words
|
||||
|
||||
return b"".join(ordered)
|
||||
|
||||
@staticmethod
|
||||
def _decode_by_type(raw_bytes: bytes, data_type: str):
|
||||
dt = (data_type or "").upper()
|
||||
|
||||
# struct: > = big endian, < = little endian
|
||||
# Wir liefern raw_bytes bereits in der richtigen Reihenfolge; daher nutzen wir ">" konsistent.
|
||||
if dt == "UINT16":
|
||||
return struct.unpack(">H", raw_bytes[:2])[0]
|
||||
if dt == "INT16":
|
||||
return struct.unpack(">h", raw_bytes[:2])[0]
|
||||
if dt == "UINT32":
|
||||
return struct.unpack(">I", raw_bytes[:4])[0]
|
||||
if dt == "INT32":
|
||||
return struct.unpack(">i", raw_bytes[:4])[0]
|
||||
if dt == "FLOAT32":
|
||||
return struct.unpack(">f", raw_bytes[:4])[0]
|
||||
if dt == "FLOAT64":
|
||||
return struct.unpack(">d", raw_bytes[:8])[0]
|
||||
|
||||
raise ValueError(f"Unbekannter Data_Type: {dt}")
|
||||
|
||||
def _decode_value(self, registers: list[int], meta: dict):
|
||||
raw = self._registers_to_bytes(registers, meta["byteorder"])
|
||||
val = self._decode_by_type(raw, meta["data_type"])
|
||||
return (val * meta["scaling"]) + meta["offset"]
|
||||
|
||||
# -------------
|
||||
# Reading
|
||||
# -------------
|
||||
def get_state(self) -> dict:
|
||||
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
|
||||
|
||||
if not self.connect():
|
||||
data["error"] = "connect_failed"
|
||||
return data
|
||||
|
||||
try:
|
||||
for address, meta in self.registers.items():
|
||||
count = int(meta["length"])
|
||||
result = self.client.read_input_registers(address, count=count)
|
||||
def get_state(self):
|
||||
data = {}
|
||||
data['Zeit'] = time.strftime('%Y-%m-%d %H:%M:%S')
|
||||
for address, info in self.registers.items():
|
||||
reg_type = info['type']
|
||||
result = self.client.read_input_registers(address, count=2 if reg_type == 'REAL' else 1)
|
||||
if result.isError():
|
||||
print(f"Fehler beim Lesen von Adresse {address}: {result}")
|
||||
continue
|
||||
|
||||
try:
|
||||
value = self._decode_value(result.registers, meta)
|
||||
except Exception as e:
|
||||
print(f"Decode-Fehler an Adresse {address} ({meta.get('tag','')}): {e}")
|
||||
continue
|
||||
|
||||
# Optional filter
|
||||
# if self._is_invalid_sentinel(value):
|
||||
# continue
|
||||
|
||||
desc = meta.get("desc") or ""
|
||||
label = f"{address} - {desc}".strip(" -")
|
||||
|
||||
data[label] = value
|
||||
tag = meta.get("tag")
|
||||
if tag:
|
||||
data[tag] = value
|
||||
|
||||
print(f"Adresse {address} - {desc}: {value}")
|
||||
|
||||
finally:
|
||||
self.close()
|
||||
if reg_type == 'REAL':
|
||||
value = result.registers[0] / 10.0
|
||||
else:
|
||||
value = result.registers[0]
|
||||
|
||||
print(f"Adresse {address} - {info['desc']}: {value}")
|
||||
data[f"{address} - {info['desc']}"] = value
|
||||
return data
|
||||
|
||||
87
main.py
87
main.py
@@ -26,56 +26,57 @@ db = DataBaseInflux(
|
||||
bucket="allmende_db"
|
||||
)
|
||||
|
||||
hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||
hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
|
||||
shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
|
||||
wr = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112')
|
||||
# hp_master = HeatPump(device_name='hp_master', ip_address='10.0.0.10', port=502)
|
||||
# hp_slave = HeatPump(device_name='hp_slave', ip_address='10.0.0.11', port=502)
|
||||
# shelly = ShellyPro3m(device_name='wohnung_2_6', ip_address='192.168.1.121')
|
||||
wr_master = PvInverter(device_name='solaredge_master', ip_address='192.168.1.112', unit=1)
|
||||
wr_slave = PvInverter(device_name='solaredge_slave', ip_address='192.168.1.112', unit=3)
|
||||
meter = SolaredgeMeter(device_name='solaredge_meter', ip_address='192.168.1.112')
|
||||
|
||||
es.add_components(hp_master, hp_slave, shelly, wr, meter)
|
||||
controller = SgReadyController(es)
|
||||
|
||||
# FORECASTING
|
||||
latitude = 48.041
|
||||
longitude = 7.862
|
||||
TZ = "Europe/Berlin"
|
||||
HORIZON_DAYS = 2
|
||||
weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
||||
site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
||||
|
||||
p_module = 435
|
||||
upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
||||
upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
||||
cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
||||
pv_plant = PvWattsPlant(site, cfgs)
|
||||
|
||||
now = datetime.now()
|
||||
next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
es.add_components(wr_master, wr_slave)#hp_master, hp_slave, shelly, wr_master, wr_slave, meter)
|
||||
# controller = SgReadyController(es)
|
||||
#
|
||||
# # FORECASTING
|
||||
# latitude = 48.041
|
||||
# longitude = 7.862
|
||||
# TZ = "Europe/Berlin"
|
||||
# HORIZON_DAYS = 2
|
||||
# weather_forecaster = WeatherForecaster(latitude=latitude, longitude=longitude)
|
||||
# site = Location(latitude=latitude, longitude=longitude, altitude=35, tz=TZ, name="Gundelfingen")
|
||||
#
|
||||
# p_module = 435
|
||||
# upper_roof_north = PvWattsSubarrayConfig(name="north", pdc0_w=(29+29+21)*p_module, tilt_deg=10, azimuth_deg=20, dc_loss=0.02, ac_loss=0.01)
|
||||
# upper_roof_south = PvWattsSubarrayConfig(name="south", pdc0_w=(29+21+20)*p_module, tilt_deg=10, azimuth_deg=200, dc_loss=0.02, ac_loss=0.01)
|
||||
# upper_roof_east = PvWattsSubarrayConfig(name="east", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=110, dc_loss=0.02, ac_loss=0.01)
|
||||
# upper_roof_west = PvWattsSubarrayConfig(name="west", pdc0_w=7*p_module, tilt_deg=10, azimuth_deg=290, dc_loss=0.02, ac_loss=0.01)
|
||||
# cfgs = [upper_roof_north, upper_roof_south, upper_roof_east, upper_roof_west]
|
||||
# pv_plant = PvWattsPlant(site, cfgs)
|
||||
#
|
||||
# now = datetime.now()
|
||||
# next_forecast_at = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
while True:
|
||||
now = datetime.now()
|
||||
if now.second % interval_seconds == 0 and now.microsecond < 100_000:
|
||||
state = es.get_state_and_store_to_database(db)
|
||||
mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
|
||||
# mode = controller.perform_action(heat_pump_name='hp_master', meter_name='solaredge_meter', state=state)
|
||||
#
|
||||
# if mode == 'mode1':
|
||||
# mode_as_binary = 0
|
||||
# else:
|
||||
# mode_as_binary = 1
|
||||
# db.store_data('sg_ready', {'mode': mode_as_binary})
|
||||
|
||||
if mode == 'mode1':
|
||||
mode_as_binary = 0
|
||||
else:
|
||||
mode_as_binary = 1
|
||||
db.store_data('sg_ready', {'mode': mode_as_binary})
|
||||
|
||||
if now >= next_forecast_at:
|
||||
# Start der Prognose: ab der kommenden vollen Stunde
|
||||
start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
||||
total = pv_plant.get_power(weather)
|
||||
db.store_forecasts('pv_forecast', total)
|
||||
|
||||
# Nächste geplante Ausführung definieren (immer volle Stunde)
|
||||
# Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
||||
while next_forecast_at <= now:
|
||||
next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
# if now >= next_forecast_at:
|
||||
# # Start der Prognose: ab der kommenden vollen Stunde
|
||||
# start_hour_local = (now + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
# weather = weather_forecaster.get_hourly_forecast(start_hour_local, HORIZON_DAYS)
|
||||
# total = pv_plant.get_power(weather)
|
||||
# db.store_forecasts('pv_forecast', total)
|
||||
#
|
||||
# # Nächste geplante Ausführung definieren (immer volle Stunde)
|
||||
# # Falls wir durch Delay mehrere Stunden verpasst haben, hole auf:
|
||||
# while next_forecast_at <= now:
|
||||
# next_forecast_at = (next_forecast_at + dt.timedelta(hours=1)).replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
|
||||
time.sleep(0.1)
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
238
pv_inverter.py
238
pv_inverter.py
@@ -1,139 +1,155 @@
|
||||
import time
|
||||
import struct
|
||||
import pandas as pd
|
||||
from typing import Dict, Any, List, Tuple, Optional
|
||||
# pv_inverter.py
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import Optional, Dict, Any, List
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
from pymodbus.exceptions import ModbusIOException
|
||||
import struct
|
||||
import time
|
||||
|
||||
EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx"
|
||||
|
||||
# Obergrenze: bis EXKLUSIVE 40206 (d.h. max. 40205)
|
||||
MAX_ADDR_EXCLUSIVE = 40121
|
||||
|
||||
class PvInverter:
|
||||
def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1):
|
||||
self.device_name = device_name
|
||||
self.ip = ip_address
|
||||
self.port = port
|
||||
self.unit = unit
|
||||
self.client: Optional[ModbusTcpClient] = None
|
||||
self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...}
|
||||
self.connect_to_modbus()
|
||||
self.load_registers(EXCEL_PATH)
|
||||
"""
|
||||
Minimaler Reader für einen SolarEdge-Inverter hinter Modbus-TCP→RTU-Gateway.
|
||||
Liest nur die bekannten Register (wie im funktionierenden Skript).
|
||||
Kompatibel mit pymodbus 2.5.x und 3.x – kein retry_on_empty.
|
||||
"""
|
||||
|
||||
# ---------- Verbindung ----------
|
||||
def connect_to_modbus(self):
|
||||
self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3)
|
||||
def __init__(
|
||||
self,
|
||||
device_name: str,
|
||||
ip_address: str,
|
||||
port: int = 502,
|
||||
unit_id: int = 1,
|
||||
timeout: float = 1.5,
|
||||
silent_interval: float = 0.02,
|
||||
):
|
||||
self.device_name = device_name
|
||||
self.host = ip_address
|
||||
self.port = port
|
||||
self.unit = unit_id
|
||||
self.timeout = timeout
|
||||
self.silent_interval = silent_interval
|
||||
self.client: Optional[ModbusTcpClient] = None
|
||||
self._connect()
|
||||
|
||||
# ---------------- Verbindung ----------------
|
||||
def _connect(self):
|
||||
# retries=0: keine internen Mehrfachversuche
|
||||
self.client = ModbusTcpClient(self.host, port=self.port, timeout=self.timeout, retries=0)
|
||||
if not self.client.connect():
|
||||
print("❌ Verbindung zu Wechselrichter fehlgeschlagen.")
|
||||
raise SystemExit(1)
|
||||
print("✅ Verbindung zu Wechselrichter hergestellt.")
|
||||
raise ConnectionError(f"Verbindung zu {self.device_name} ({self.host}:{self.port}) fehlgeschlagen.")
|
||||
print(f"✅ Verbindung hergestellt zu {self.device_name} ({self.host}:{self.port}, unit={self.unit})")
|
||||
|
||||
def close(self):
|
||||
if self.client:
|
||||
self.client.close()
|
||||
self.client = None
|
||||
|
||||
# ---------- Register-Liste ----------
|
||||
def load_registers(self, excel_path: str):
|
||||
xls = pd.ExcelFile(excel_path)
|
||||
df = xls.parse()
|
||||
# Passe Spaltennamen hier an, falls nötig:
|
||||
cols = ["MB Adresse", "Beschreibung", "Variabel Typ"]
|
||||
df = df[cols].dropna()
|
||||
df["MB Adresse"] = df["MB Adresse"].astype(int)
|
||||
|
||||
# 1) Vorab-Filter: nur Adressen < 40206 übernehmen
|
||||
df = df[df["MB Adresse"] < MAX_ADDR_EXCLUSIVE]
|
||||
|
||||
self.registers = {
|
||||
int(row["MB Adresse"]): {
|
||||
"desc": str(row["Beschreibung"]).strip(),
|
||||
"type": str(row["Variabel Typ"]).strip()
|
||||
}
|
||||
for _, row in df.iterrows()
|
||||
}
|
||||
|
||||
|
||||
# ---------- Low-Level Lesen ----------
|
||||
def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]:
|
||||
fn = getattr(self.client, fn_name)
|
||||
# pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht
|
||||
for kwargs in (dict(address=address, count=count, slave=self.unit),
|
||||
dict(address=address, count=count)):
|
||||
# ---------------- Low-Level Lesen ----------------
|
||||
def _read_regs(self, addr: int, count: int) -> Optional[List[int]]:
|
||||
"""Liest 'count' Holding-Register ab base-0 'addr' für die konfigurierte Unit-ID."""
|
||||
try:
|
||||
res = fn(**kwargs)
|
||||
if res is None or (hasattr(res, "isError") and res.isError()):
|
||||
continue
|
||||
return res.registers
|
||||
except TypeError:
|
||||
continue
|
||||
rr = self.client.read_holding_registers(address=addr, count=count, slave=self.unit)
|
||||
except ModbusIOException:
|
||||
time.sleep(self.silent_interval)
|
||||
return None
|
||||
except Exception:
|
||||
time.sleep(self.silent_interval)
|
||||
return None
|
||||
|
||||
def _read_any(self, address: int, count: int) -> Optional[List[int]]:
|
||||
regs = self._try_read("read_holding_registers", address, count)
|
||||
if regs is None:
|
||||
regs = self._try_read("read_input_registers", address, count)
|
||||
return regs
|
||||
time.sleep(self.silent_interval)
|
||||
if not rr or rr.isError():
|
||||
return None
|
||||
return rr.registers
|
||||
|
||||
# ---------- Decoding ----------
|
||||
@staticmethod
|
||||
def _to_i16(u16: int) -> int:
|
||||
def _to_int16(u16: int) -> int:
|
||||
return struct.unpack(">h", struct.pack(">H", u16))[0]
|
||||
|
||||
@staticmethod
|
||||
def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float:
|
||||
b = struct.pack(">HH", u16_hi, u16_lo) if msw_first else struct.pack(">HH", u16_lo, u16_hi)
|
||||
return struct.unpack(">f", b)[0]
|
||||
def _apply_sf(raw: int, sf: int) -> float:
|
||||
return raw * (10 ** sf)
|
||||
|
||||
# Hilfsfunktion: wie viele 16-Bit-Register braucht dieser Typ?
|
||||
@staticmethod
|
||||
def _word_count_for_type(rtype: str) -> int:
|
||||
rt = (rtype or "").lower()
|
||||
# Passe hier an deine Excel-Typen an:
|
||||
if "uint32" in rt or "real" in rt or "float" in rt or "string(32)" in rt:
|
||||
return 2
|
||||
# Default: 1 Wort (z.B. int16/uint16)
|
||||
return 1
|
||||
def _read_string_from_regs(regs: List[int]) -> Optional[str]:
|
||||
b = b"".join(struct.pack(">H", r) for r in regs)
|
||||
s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip()
|
||||
return s or None
|
||||
|
||||
def read_one(self, address_excel: int, rtype: str) -> Optional[float]:
|
||||
"""
|
||||
Liest einen Wert nach Typ ('INT' oder 'REAL' etc.).
|
||||
Es werden ausschließlich Register < 40206 gelesen.
|
||||
"""
|
||||
addr = int(address_excel)
|
||||
words = self._word_count_for_type(rtype)
|
||||
|
||||
# 2) Harte Grenze prüfen: höchstes angefasstes Register muss < 40206 sein
|
||||
if addr + words - 1 >= MAX_ADDR_EXCLUSIVE:
|
||||
# Überspringen, da der Lesevorgang die Grenze >= 40206 berühren würde
|
||||
# ---------------- Hilfsfunktionen ----------------
|
||||
def _read_string(self, addr: int, words: int) -> Optional[str]:
|
||||
regs = self._read_regs(addr, words)
|
||||
if regs is None:
|
||||
return None
|
||||
return self._read_string_from_regs(regs)
|
||||
|
||||
if words == 2:
|
||||
regs = self._read_any(addr, 2)
|
||||
if not regs or len(regs) < 2:
|
||||
def _read_scaled(self, value_addr: int, sf_addr: int) -> Optional[float]:
|
||||
regs = self._read_regs(value_addr, 1)
|
||||
sf = self._read_regs(sf_addr, 1)
|
||||
if regs is None or sf is None:
|
||||
return None
|
||||
# Deine bisherige Logik interpretiert 2 Worte als Float32:
|
||||
return self._to_f32_from_two(regs[0], regs[1])
|
||||
else:
|
||||
regs = self._read_any(addr, 1)
|
||||
if not regs:
|
||||
return None
|
||||
return float(self._to_i16(regs[0]))
|
||||
raw = self._to_int16(regs[0])
|
||||
sff = self._to_int16(sf[0])
|
||||
return self._apply_sf(raw, sff)
|
||||
|
||||
def _read_u32_with_sf(self, value_addr: int, sf_addr: int) -> Optional[float]:
|
||||
regs = self._read_regs(value_addr, 2)
|
||||
sf = self._read_regs(sf_addr, 1)
|
||||
if regs is None or sf is None:
|
||||
return None
|
||||
u32 = (regs[0] << 16) | regs[1]
|
||||
sff = self._to_int16(sf[0])
|
||||
return self._apply_sf(u32, sff)
|
||||
|
||||
# ---------------- Öffentliche API ----------------
|
||||
def get_state(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Liest ALLE Register aus self.registers und gibt dict zurück.
|
||||
Achtet darauf, dass keine Adresse (inkl. Mehrwort) >= 40206 gelesen wird.
|
||||
"""
|
||||
data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")}
|
||||
for address, meta in sorted(self.registers.items()):
|
||||
words = self._word_count_for_type(meta["type"])
|
||||
# 3) Nochmals Schutz auf Ebene der Iteration:
|
||||
if address + words - 1 >= MAX_ADDR_EXCLUSIVE:
|
||||
continue
|
||||
val = self.read_one(address, meta["type"])
|
||||
if val is None:
|
||||
continue
|
||||
key = f"{address} - {meta['desc']}"
|
||||
data[key] = val
|
||||
return data
|
||||
"""Liest exakt die bekannten Register und gibt ein Dict zurück."""
|
||||
state: Dict[str, Any] = {}
|
||||
|
||||
# --- Common Block ---
|
||||
state["C_Manufacturer"] = self._read_string(40004, 16)
|
||||
state["C_Model"] = self._read_string(40020, 16)
|
||||
state["C_Version"] = self._read_string(40044, 8)
|
||||
state["C_SerialNumber"] = self._read_string(40052, 16)
|
||||
|
||||
# --- Inverter Block ---
|
||||
state["I_AC_Power_W"] = self._read_scaled(40083, 40084)
|
||||
state["I_AC_Voltage_V"] = self._read_scaled(40079, 40082)
|
||||
state["I_AC_Frequency_Hz"] = self._read_scaled(40085, 40086)
|
||||
state["I_DC_Power_W"] = self._read_scaled(40100, 40101)
|
||||
state["I_AC_Energy_Wh_total"] = self._read_u32_with_sf(40093, 40095)
|
||||
|
||||
status_regs = self._read_regs(40107, 2)
|
||||
if status_regs:
|
||||
state["I_Status"] = status_regs[0]
|
||||
state["I_Status_Vendor"] = status_regs[1]
|
||||
else:
|
||||
state["I_Status"] = None
|
||||
state["I_Status_Vendor"] = None
|
||||
|
||||
return state
|
||||
|
||||
|
||||
# ---------------- Beispiel ----------------
|
||||
if __name__ == "__main__":
|
||||
MODBUS_IP = "192.168.1.112"
|
||||
MODBUS_PORT = 502
|
||||
|
||||
master = PvInverter("solaredge_master", MODBUS_IP, port=MODBUS_PORT, unit_id=1)
|
||||
slave = PvInverter("solaredge_slave", MODBUS_IP, port=MODBUS_PORT, unit_id=3)
|
||||
|
||||
try:
|
||||
sm = master.get_state()
|
||||
ss = slave.get_state()
|
||||
|
||||
print("\n=== MASTER ===")
|
||||
for k, v in sm.items():
|
||||
print(f"{k:22s}: {v}")
|
||||
|
||||
print("\n=== SLAVE ===")
|
||||
for k, v in ss.items():
|
||||
print(f"{k:22s}: {v}")
|
||||
|
||||
finally:
|
||||
master.close()
|
||||
slave.close()
|
||||
|
||||
Binary file not shown.
Reference in New Issue
Block a user