import time import struct import pandas as pd import matplotlib.pyplot as plt from collections import deque from typing import Dict, Any, List, Tuple, Optional from pymodbus.client import ModbusTcpClient EXCEL_PATH = "modbus_registers/pv_inverter_registers.xlsx" class PvInverter: def __init__(self, device_name: str, ip_address: str, port: int = 502, unit: int = 1): self.device_name = device_name self.ip = ip_address self.port = port self.unit = unit self.client: Optional[ModbusTcpClient] = None self.registers: Dict[int, Dict[str, Any]] = {} # addr -> {"desc":..., "type":...} self.connect_to_modbus() self.load_registers(EXCEL_PATH) # ---------- Verbindung ---------- def connect_to_modbus(self): self.client = ModbusTcpClient(self.ip, port=self.port, timeout=3.0, retries=3) if not self.client.connect(): print("❌ Verbindung zu Wechselrichter fehlgeschlagen.") raise SystemExit(1) print("✅ Verbindung zu Wechselrichter hergestellt.") def close(self): if self.client: self.client.close() self.client = None # ---------- Register-Liste ---------- def load_registers(self, excel_path: str): xls = pd.ExcelFile(excel_path) df = xls.parse() # Passen die Spaltennamen bei dir anders, bitte hier anpassen: cols = ["MB Adresse", "Beschreibung", "Variabel Typ"] for c in cols: if c not in df.columns: raise ValueError(f"Spalte '{c}' fehlt in {excel_path}") df = df[cols].dropna() df["MB Adresse"] = df["MB Adresse"].astype(int) # NORMALISIERE TYP def norm_type(x: Any) -> str: s = str(x).strip().upper() return "REAL" if s == "REAL" else "INT" self.registers = { int(row["MB Adresse"]): { "desc": str(row["Beschreibung"]).strip(), "type": norm_type(row["Variabel Typ"]) } for _, row in df.iterrows() } print(f"ℹ️ {len(self.registers)} Register aus Excel geladen.") # ---------- Low-Level Lesen ---------- def _try_read(self, fn_name: str, address: int, count: int) -> Optional[List[int]]: fn = getattr(self.client, fn_name) # pymodbus 3.8.x hat 'slave='; Fallbacks schaden nicht for kwargs in (dict(address=address, count=count, slave=self.unit), dict(address=address, count=count), ): try: res = fn(**kwargs) if res is None or (hasattr(res, "isError") and res.isError()): continue return res.registers except TypeError: continue return None def _read_any(self, address: int, count: int) -> Optional[List[int]]: regs = self._try_read("read_holding_registers", address, count) if regs is None: regs = self._try_read("read_input_registers", address, count) return regs # ---------- Decoding ---------- @staticmethod def _to_i16(u16: int) -> int: return struct.unpack(">h", struct.pack(">H", u16))[0] @staticmethod def _to_f32_from_two(u16_hi: int, u16_lo: int, msw_first: bool = True) -> float: if msw_first: b = struct.pack(">HH", u16_hi, u16_lo) else: b = struct.pack(">HH", u16_lo, u16_hi) return struct.unpack(">f", b)[0] def read_one(self, address_excel: int, rtype: str) -> Optional[float]: """Liest einen Wert nach Typ ('INT' oder 'REAL') unter Berücksichtigung Base-1.""" addr = address_excel if rtype == "REAL": regs = self._read_any(addr, 2) if not regs or len(regs) < 2: return None return self._to_f32_from_two(regs[0], regs[1]) else: # INT regs = self._read_any(addr, 1) if not regs: return None return float(self._to_i16(regs[0])) def get_state(self) -> Dict[str, Any]: """Liest ALLE Register aus self.registers und gibt dict zurück.""" data = {"Zeit": time.strftime("%Y-%m-%d %H:%M:%S")} for address, meta in self.registers.items(): val = self.read_one(address, meta["type"]) if val is None: continue key = f"{address} - {meta['desc']}" data[key] = val return data