from pymodbus.client import ModbusTcpClient import struct import sys from typing import Optional # === Verbindungseinstellungen === MODBUS_IP = "192.168.1.112" MODBUS_PORT = 502 # SetApp: 1502; LCD-Menü: 502 -> ggf. anpassen UNIT_ID = 1 # Default laut Doku: 1 client = ModbusTcpClient(MODBUS_IP, port=MODBUS_PORT) if not client.connect(): print("Verbindung fehlgeschlagen.") sys.exit(1) def read_regs(addr: int, count: int): """Hilfsfunktion: liest 'count' Holding-Register ab base-0 'addr'.""" rr = client.read_holding_registers(address=addr, count=count) if rr.isError(): return None return rr.registers def read_string(addr: int, words: int) -> Optional[str]: """ SunSpec-Strings: ASCII, Big-Endian, 2 Bytes pro Register, 0x00 gepadded. """ regs = read_regs(addr, words) if regs is None: return None b = b"".join(struct.pack(">H", r) for r in regs) # SunSpec Strings sind meist mit \x00 und Spaces gepadded: s = b.decode("ascii", errors="ignore").rstrip("\x00 ").strip() return s or None def to_int16(u16: int) -> int: """unsigned 16 -> signed 16""" return struct.unpack(">h", struct.pack(">H", u16))[0] def apply_sf(raw: int, sf: int) -> float: return raw * (10 ** sf) def read_scaled(value_addr: int, sf_addr: int) -> Optional[float]: regs = read_regs(value_addr, 1) sf = read_regs(sf_addr, 1) if regs is None or sf is None: return None raw = to_int16(regs[0]) sff = to_int16(sf[0]) return apply_sf(raw, sff) def read_u32_with_sf(value_addr: int, sf_addr: int) -> Optional[float]: """ Liest 32-bit Zähler (acc32, Big-Endian, 2 Register) + SF. """ regs = read_regs(value_addr, 2) sf = read_regs(sf_addr, 1) if regs is None or sf is None: return None # Big-Endian zusammenbauen: u32 = (regs[0] << 16) | regs[1] sff = to_int16(sf[0]) return apply_sf(u32, sff) # ==== Common Block (base-0) ==== manufacturer = read_string(40004, 16) # C_Manufacturer model = read_string(40020, 16) # C_Model version = read_string(40044, 8) # C_Version serial = read_string(40052, 16) # C_SerialNumber print(f"Hersteller: {manufacturer}") print(f"Modell: {model}") print(f"Version: {version}") print(f"Seriennummer: {serial}") # ==== Inverter Block (base-0) ==== # AC Power + Scale Factor ac_power = read_scaled(40083, 40084) # I_AC_Power, I_AC_Power_SF if ac_power is not None: print(f"AC Power: {ac_power} W") else: print("Fehler beim Lesen von AC Power") # AC Spannung L-N Durchschnitt (falls 1ph/3ph mit N verfügbar) + SF ac_voltage = read_scaled(40079, 40082) # I_AC_VoltageAN, I_AC_Voltage_SF if ac_voltage is not None: print(f"AC Spannung: {ac_voltage} V") # AC Frequenz + SF ac_freq = read_scaled(40085, 40086) # I_AC_Frequency, _SF if ac_freq is not None: print(f"Frequenz: {ac_freq} Hz") # DC Power + SF dc_power = read_scaled(40100, 40101) # I_DC_Power, _SF if dc_power is not None: print(f"DC Power: {dc_power} W") # Lifetime Energy (AC_Energy_WH, acc32) + SF lifetime_wh = read_u32_with_sf(40093, 40095) # I_AC_Energy_WH, _SF if lifetime_wh is not None: print(f"Lifetime Energy: {lifetime_wh} Wh") # Status status_regs = read_regs(40107, 2) # I_Status, I_Status_Vendor if status_regs: i_status = status_regs[0] i_status_vendor = status_regs[1] print(f"Status: {i_status} (Vendor: {i_status_vendor})") client.close()